FieldMatVec.hpp 11.7 KB
Newer Older
1
2
#pragma once

3
4
#include <type_traits>

5
#include <dune/common/diagonalmatrix.hh>
6
7
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
8
#include <dune/common/typetraits.hh>
9

Praetorius, Simon's avatar
Praetorius, Simon committed
10
11
#include <amdis/common/TypeTraits.hpp>

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
namespace std
{
  template <class T, int N>
  struct common_type<Dune::FieldVector<T,N>, T>
  {
    using type = T;
  };

  template <class T, int N, int M>
  struct common_type<Dune::FieldMatrix<T,N,M>, T>
  {
    using type = T;
  };
}

27
namespace Dune
28
{
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  namespace MatVec
  {
    /// Traits to detect fixed size containers like FieldVector and FieldMatrix
    /// @{
    template <class T>
    struct IsMatrix : std::false_type {};

    template <class T, int M, int N>
    struct IsMatrix<FieldMatrix<T,M,N>> : std::true_type {};

    template <class T, int N>
    struct IsMatrix<DiagonalMatrix<T,N>> : std::true_type {};


    template <class T>
    struct IsVector : std::false_type {};

    template <class T, int N>
    struct IsVector<FieldVector<T,N>> : std::true_type {};


    template <class T>
    struct IsMatVec
      : std::integral_constant<bool, IsMatrix<T>::value || IsVector<T>::value> {};
    /// @}

    /// Convert the field_Type of container to type S
    /// @{
    template <class A, class S>
    struct MakeMatVec
    {
      using type = A;
    };

    template <class T, int M, int N, class S>
    struct MakeMatVec<FieldMatrix<T,M,N>,S>
    {
      using type = FieldMatrix<S,M,N>;
    };

    template <class T, int N, class S>
    struct MakeMatVec<DiagonalMatrix<T,N>,S>
    {
      using type = DiagonalMatrix<S,N>;
    };

    template <class T, int N, class S>
    struct MakeMatVec<FieldVector<T,N>,S>
    {
      using type = FieldVector<S,N>;
    };
    /// @}

    /// Convert pseudo-scalar to real scalar type
    /// @{
    template <class T>
85
    decltype(auto) as_scalar(T&& t)
86
    {
Praetorius, Simon's avatar
Praetorius, Simon committed
87
      return FWD(t);
88
89
90
    }

    template <class T>
91
    T as_scalar(FieldVector<T,1> const& t)
92
93
94
95
96
    {
      return t[0];
    }

    template <class T>
97
    T as_scalar(FieldMatrix<T,1,1> const& t)
98
99
100
101
102
    {
      return t[0][0];
    }

    template <class T>
103
    T as_scalar(DiagonalMatrix<T,1> const& t)
104
105
106
107
108
    {
      return t.diagonal(0);
    }
    /// @}

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    /// Convert pseudo-vector to real vector type
    /// @{
    template <class T>
    decltype(auto) as_vector(T&& t)
    {
      return FWD(t);
    }

    template <class T, int N>
    FieldVector<T,N> const& as_vector(FieldMatrix<T,1,N> const& t)
    {
      return t[0];
    }

    template <class T, int N>
    FieldVector<T,N>& as_vector(FieldMatrix<T,1,N>& t)
    {
      return t[0];
    }
    /// @}

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    /// Convert pseudo-matrix to real matrix type with proper operator[][]
    /// @{
    template <class T>
    decltype(auto) as_matrix(T&& t)
    {
      return FWD(t);
    }

    template <class Mat>
    class MatrixView;

    template <class T, int N>
    MatrixView<DiagonalMatrix<T,N>> as_matrix(DiagonalMatrix<T,N> const& mat)
    {
      return {mat};
    }
147
    /// @}
148

149
150
151
152
153
154
    // returns -a
    template <class A>
    auto negate(A const& a);

    // returns a+b
    template <class A, class B>
155
    auto plus(A const& a, B const& b);
156
157
158

    // returns a-b
    template <class A, class B>
159
    auto minus(A const& a, B const& b);
160
161
162

    // returns a*b
    template <class A, class B,
163
164
165
166
167
      std::enable_if_t<IsNumber<A>::value && IsNumber<B>::value, int> = 0>
    auto multiplies(A const& a, B const& b);

    template <class A, class B,
      std::enable_if_t<IsNumber<A>::value != IsNumber<B>::value, int> = 0>
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    auto multiplies(A const& a, B const& b);

    template <class T, int N, class S>
    auto multiplies(FieldVector<T,N> const& a, FieldVector<S,N> const& b);

    template <class Mat, class Vec,
      std::enable_if_t<IsMatrix<Mat>::value && IsVector<Vec>::value, int> = 0>
    auto multiplies(Mat const& mat, Vec const& vec);

    template <class Vec, class Mat,
      std::enable_if_t<IsVector<Vec>::value && IsMatrix<Mat>::value, int> = 0>
    auto multiplies(Vec const& vec, Mat const& mat);

    template <class T, int L, int M, int N, class S>
    auto multiplies(FieldMatrix<T,L,M> const& a, FieldMatrix<S,M,N> const& b);

    // return a/b
    template <class A, class B>
    auto divides(A a, B const& b)
    {
      return a /= b;
    }

  } // end namespace MatVec

  // some arithmetic operations with FieldVector and FieldMatrix

  template <class A,
    std::enable_if_t<MatVec::IsMatVec<A>::value, int> = 0>
  auto operator-(A const& a)
  {
199
    return MatVec::negate(MatVec::as_scalar(a));
200
  }
201

202
203
204
205
  template <class A, class B,
    std::enable_if_t<MatVec::IsMatVec<A>::value || MatVec::IsMatVec<B>::value, int> = 0>
  auto operator+(A const& a, B const& b)
  {
206
    return MatVec::plus(MatVec::as_scalar(a), MatVec::as_scalar(b));
207
  }
208

209
210
211
212
  template <class A, class B,
    std::enable_if_t<MatVec::IsMatVec<A>::value || MatVec::IsMatVec<B>::value, int> = 0>
  auto operator-(A const& a, B const& b)
  {
213
    return MatVec::minus(MatVec::as_scalar(a), MatVec::as_scalar(b));
214
  }
215

216
217
218
219
  template <class A, class B,
    std::enable_if_t<MatVec::IsMatVec<A>::value || MatVec::IsMatVec<B>::value, int> = 0>
  auto operator*(A const& a, B const& b)
  {
220
    return MatVec::multiplies(MatVec::as_scalar(a), MatVec::as_scalar(b));
221
  }
222

223
224
225
226
  template <class A, class B,
    std::enable_if_t<MatVec::IsMatVec<A>::value || MatVec::IsMatVec<B>::value, int> = 0>
  auto operator/(A const& a, B const& b)
  {
227
    return MatVec::divides(MatVec::as_scalar(a), MatVec::as_scalar(b));
228
  }
229
230
231
232
233

  // ----------------------------------------------------------------------------

  /// Cross-product a 2d-vector = orthogonal vector
  template <class T>
234
  FieldVector<T, 2> cross(FieldVector<T, 2> const& a);
235

236
  /// Cross-product of two 3d-vectors
237
  template <class T>
238
  FieldVector<T, 3> cross(FieldVector<T, 3> const& a, FieldVector<T, 3> const& b);
239
240
241

  /// Dot product (vec1^T * vec2)
  template <class T, class S, int N>
242
  auto dot(FieldVector<T,N> const& vec1, FieldVector<S,N> const& vec2);
243

244
245
246
  template <class T, class S, int N>
  auto dot(FieldMatrix<T,1,N> const& vec1, FieldMatrix<S,1,N> const& vec2);

247
248
249
250
  // ----------------------------------------------------------------------------

  /// Sum of vector entires.
  template <class T, int N>
251
  T sum(FieldVector<T, N> const& x);
252

253
  template <class T, int N>
254
  T sum(FieldMatrix<T, 1, N> const& x);
255

256
257
258

  /// Dot-product with the vector itself
  template <class T, int N>
259
  auto unary_dot(FieldVector<T, N> const& x);
260

261
  template <class T, int N>
262
  auto unary_dot(FieldMatrix<T, 1, N> const& x);
263

264
265
  /// Maximum over all vector entries
  template <class T, int N>
266
  auto max(FieldVector<T, N> const& x);
267

268
  template <class T, int N>
269
  auto max(FieldMatrix<T, 1, N> const& x);
270

271
272
  /// Minimum over all vector entries
  template <class T, int N>
273
  auto min(FieldVector<T, N> const& x);
274

275
  template <class T, int N>
276
  auto min(FieldMatrix<T, 1, N> const& x);
277

278
279
  /// Maximum of the absolute values of vector entries
  template <class T, int N>
280
  auto abs_max(FieldVector<T, N> const& x);
281

282
  template <class T, int N>
283
  auto abs_max(FieldMatrix<T, 1, N> const& x);
284

285
286
  /// Minimum of the absolute values of vector entries
  template <class T, int N>
287
  auto abs_min(FieldVector<T, N> const& x);
288

289
  template <class T, int N>
290
  auto abs_min(FieldMatrix<T, 1, N> const& x);
291

292
293
294
295
296
297
  // ----------------------------------------------------------------------------

  /** \ingroup vector_norms
   *  \brief The 1-norm of a vector = sum_i |x_i|
   **/
  template <class T, int N>
298
  auto one_norm(FieldVector<T, N> const& x);
299

300
  template <class T, int N>
301
  auto one_norm(FieldMatrix<T, 1, N> const& x);
302

303
304
305
306
  /** \ingroup vector_norms
   *  \brief The euklidean 2-norm of a vector = sqrt( sum_i |x_i|^2 )
   **/
  template <class T, int N>
307
  auto two_norm(FieldVector<T, N> const& x);
308

309
  template <class T, int N>
310
  auto two_norm(FieldMatrix<T, 1, N> const& x);
311

312
313
314
315
  /** \ingroup vector_norms
   *  \brief The p-norm of a vector = ( sum_i |x_i|^p )^(1/p)
   **/
  template <int p, class T, int N>
316
  auto p_norm(FieldVector<T, N> const& x);
317

318
  template <int p, class T, int N>
319
  auto p_norm(FieldMatrix<T, 1, N> const& x);
320

321
322
323
324
  /** \ingroup vector_norms
   *  \brief The infty-norm of a vector = max_i |x_i| = alias for \ref abs_max
   **/
  template <class T, int N>
325
  auto infty_norm(FieldVector<T, N> const& x);
326

327
  template <class T, int N>
328
  auto infty_norm(FieldMatrix<T, 1, N> const& x);
329

330
331
332
333
  // ----------------------------------------------------------------------------

  /// The euklidean distance between two vectors = |lhs-rhs|_2
  template <class T, int N>
334
  T distance(FieldVector<T, N> const& lhs, FieldVector<T, N> const& rhs);
335
336
337
338
339

  // ----------------------------------------------------------------------------

  /// Outer product (vec1 * vec2^T)
  template <class T, class S, int N, int M, int K>
340
  auto outer(FieldMatrix<T,N,K> const& vec1, FieldMatrix<S,M,K> const& vec2);
341
342
343
344

  // ----------------------------------------------------------------------------

  template <class T>
345
  T det(FieldMatrix<T, 0, 0> const& /*mat*/);
346
347
348

  /// Determinant of a 1x1 matrix
  template <class T>
349
  T det(FieldMatrix<T, 1, 1> const& mat);
350
351
352

  /// Determinant of a 2x2 matrix
  template <class T>
353
  T det(FieldMatrix<T, 2, 2> const& mat);
354
355
356

  /// Determinant of a 3x3 matrix
  template <class T>
357
  T det(FieldMatrix<T, 3, 3> const& mat);
358
359
360

  /// Determinant of a NxN matrix
  template <class T,  int N>
361
362
  T det(FieldMatrix<T, N, N> const& mat);

363
364
365

  /// Return the inverse of the matrix `mat`
  template <class T, int N>
366
  auto inv(FieldMatrix<T, N, N> mat);
367
368
369

  /// Solve the linear system A*x = b
  template <class T, int N>
370
  void solve(FieldMatrix<T, N, N> const& A,  FieldVector<T, N>& x,  FieldVector<T, N> const& b);
371
372
373
374


  /// Gramian determinant = sqrt( det( DT^T * DF ) )
  template <class T, int N, int M>
375
  T gramian(FieldMatrix<T,N,M> const& DF);
376
377
378

  /// Gramian determinant, specialization for 1 column matrices
  template <class T, int M>
379
  T gramian(FieldMatrix<T, 1, M> const& DF);
380

381
382
383
  // ----------------------------------------------------------------------------
  // some arithmetic operations with FieldMatrix

384
  template <class T, int M, int N>
385
  FieldMatrix<T,N,M> trans(FieldMatrix<T, M, N> const& A);
386

387
388
389
390
391
392
  template <class T, int N>
  DiagonalMatrix<T,N> const& trans(DiagonalMatrix<T,N> const& A)
  {
    return A;
  }

393
  // -----------------------------------------------------------------------------
394

395
396
  template <class T1, class T2, int M, int N, int L>
  FieldMatrix<std::common_type_t<T1,T2>,M,N> multiplies_AtB(FieldMatrix<T1, L, M> const& A,  FieldMatrix<T2, N, L> const& B);
397

398
399
  template <class T1, class T2, int M, int N, int L>
  FieldMatrix<std::common_type_t<T1,T2>,M,N> multiplies_ABt(FieldMatrix<T1, M, L> const& A,  FieldMatrix<T2, N, L> const& B);
400

401
402
  template <class T1, class T2, class T3, int M, int N, int L>
  FieldMatrix<T3,M,N>& multiplies_ABt(FieldMatrix<T1, M, L> const& A,  FieldMatrix<T2, N, L> const& B, FieldMatrix<T3,M,N>& C);
403

404
405
406
407
408
  template <class T1, class T2, class T3, int M, int N>
  FieldMatrix<T3,M,N>& multiplies_ABt(FieldMatrix<T1, M, N> const& A,  DiagonalMatrix<T2, N> const& B, FieldMatrix<T3,M,N>& C);

  template <class T1, class T2, class T3, int N>
  FieldVector<T3,N>& multiplies_ABt(FieldMatrix<T1, 1, N> const& A,  DiagonalMatrix<T2, N> const& B, FieldVector<T3,N>& C);
409

410
  // -----------------------------------------------------------------------------
411
412
413
414
415
416
417

  template <class T, int N>
  T const& at(FieldMatrix<T,N,1> const& vec, std::size_t i);

  template <class T, int M>
  T const& at(FieldMatrix<T,1,M> const& vec, std::size_t i);

418
  // necessary specialization to resolve ambiguous calls
419
420
421
  template <class T>
  T const& at(FieldMatrix<T,1,1> const& vec, std::size_t i);

422
423
424
  template <class T, int N>
  T const& at(FieldVector<T,N> const& vec, std::size_t i);

425
426
427
428
429
430
431
} // end namespace Dune

namespace AMDiS
{
  using Dune::FieldMatrix;
  using Dune::FieldVector;
}
432
433

#include "FieldMatVec.inc.hpp"