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Chapter 1

Introduction

The objective of this tutorial is to introduce the user into the main AMDiS features by giving some
application examples.

Section 2 describes the installation of the AMDiS library and the building of user applications
step by step. The corresponding application makefile is given in Section 3.

In Section 4, for every example the following aspects are described:

• Abstract problem description: In the header of each example section, the abstract prob-
lem definition is given. Sometimes, some solution strategies on a high abstraction level are
mentioned, also.

• Source code: In the source code section, the listing of the example source code is ex-
plained.

• Parameter file: In this section, the parameter file is described. The parameter file contains
parameters which are read be the application at runtime. The name of the parameter file is
usually passed to the the application as a command line argument.

• Macro file: In the macro file section, the definition of the coarse macro mesh is shown,
which is the basis for adaptive refinements.

• Output: The AMDiS results are written to output files that contain the final mesh and the
problem solution on this mesh. The output can be visualized with ParaView. In the output
section, the visualized problem results are shown and discussed.

To avoid unnecessary repetitions, not every aspect of every example is described, but only those
aspects that have not appeared in previous examples.
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Chapter 2

Installation

2.1 Installation of the AMDiS library

There are two different ways to install AMDiS, depending if you have a binary packages down-
loaded from www.amdis-fem.org, or you have a source package. In the first case, you just need
to run the package manager of your Linux distribution and install this package. To install AMDiS
from the sources, you need CMake with version at least 2.8. Follow the hints in the file AMDiS-
/Howto cmake.html.

2.2 Compilation of an example application

For the compilation of the examples, described in this section, the following steps must be exe-
cuted:

1. Change into the demo directory:
> cd demo

2. call cmake:
> ccmake .

3. if AMDiS is not found automatically, set AMDIS_DIR to the directory of AMDiS/share/amdis

4. Make the application example:
> make <PROG-NAME>

<PROG-NAME> is the name of the application example.

To run the example, call:
> ./<PROG-NAME> <PARAMETER-FILE>

7
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Chapter 3

Application makefile

In this section, the organization of the application makefile is described which is used for the
examples in this tutorial. The same organization can be used for other user applications, too.

In the first block, user flags and directories are specified.

# ============================================================================
# ===== flags and directories (to be modified by the user) ===================
# ============================================================================

USE_PARALLEL_AMDIS = 0
USE_OPENMP = 0
USE_UMFPACK = 1
USE_MKL = 0
USE_SERVER =
USE_COMPILER = gcc
DEBUG = 0

AMDIS_DIR = ../AMDiS
MPI_DIR =

If USE_PARALLEL_AMDIS is set to 1, parallel applications will be supported. If AMDiS is compiled
with OpenMP supported, USE_OPENMP must be set to 1. If you want to make use of UMFPACK oder
Intel’s Math Kernel Library, set USE_UMPFACK and USE_MKL, repsectively, to 1. In both cases, AMDiS
must be compiled with the corresponding options. If you run your computations on one of the high
performance computers installed at the TU Dresden, insert the name of the corresponding system
to USE_SERVER. Using the flag USE_COMPILER you may decide to use either the GNU C++ or the
Intel C++ compiler. Note that your program must be compiled with the same compiler AMDiS has
been compiled with. To the last you can enable the debuge mode in your code setting DEBUG to 1.

AMDIS_DIR stores the AMDiS installation path and must be set by the user. This is the path
given to the AMDiS configure script by the --prefix option. If you have not changed the directory
structure of your AMDiS installation, or you do not want to use some other AMDiS installation for
the demo examples, you do not need to change the standard value. The value of MPI_DIR is only
required for parallel computations. If you run your parallel computations on the high performance
computers of the TU Dresden, do not set a value here.

Then the AMDiS makefile is included from the corresponding AMDiSinstallation:

#==== standard definitions and rules to compile AMDiS user programs ==========
include $(AMDIS_DIR)/other/include/Makefile_AMDiS.mk

Finally, we define rules for the linking of user applications. Here, we present only the rule for
the ellipt application. Other applications can be created in an analog way.
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# ============================================================================
# ===== user programs ========================================================
# ============================================================================

VPATH = .:./src

# ===== myprog ===============================================================

ELLIPT_OFILES = ellipt.o

ellipt: $(ELLIPT_OFILES)
$(LINK) $(CPPFLAGS) -o ellipt $(ELLIPT_OFILES) $(LIBS)

The VPATH variable contains all pathes, where sources can be located. The ellipt rule
first creates all needed object files defined in ELLIPT_OFILES. In this example, only ellipt.o
is needed. Then all needed object files and libraries are linked together. The -o option specifies
that the executable will be written to the file ellipt.



Chapter 4

Implementation of example
problems

4.1 Stationary problem with Dirichlet boundary condition

As example for a stationary problem, we choose the Poisson equation

−∆u = f in Ω ⊂ Rdim (4.1)
u = g on ∂Ω (4.2)

with

f(x) = −
(
400x2 − 20dow

)
e−10x2

(4.3)

g(x) = e−10x2
. (4.4)

dim is the problem dimension and thus the dimension of the mesh the problem will be discretized
on. dow is the dimension of the world the problem lives in. So world coordinates are always real
valued vectors of size dow. Note that the problem is defined in a dimension independent way.
Furthermore, dow has not to be equal to dim as long as 1 ≤ dim ≤ dow ≤ 3 holds.

Although the implementation described in Section 4.1.1 is dimension independent, we focus
on the case dim = dow = 2 for the rest of this section. The analytical solution on Ω = [0, 1]× [0, 1]
is shown in Figure 4.1.

Figure 4.1: Solution of the Poisson equation on the unit square.
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1d 2d 3d
source code src/ ellipt.cc

parameter file init/ ellipt.dat.1d ellipt.dat.2d ellipt.dat.3d
macro file macro/ macro.stand.1d macro.stand.2d macro.stand.3d

output files output/ ellipt.mesh, ellipt.dat

Table 4.1: Files of the ellipt example.

4.1.1 Source code

For this first example, we give the complete source code. But to avoid loosing the overview,
we sometimes interrupt the code to give some explaining comment. The first three lines of the
application code are:

# inc lude ”AMDiS . h ”
using namespace AMDiS ;
using namespace std ;

In the first line, the AMDiS header is included. In line 2 and 3, used namespaces are in-
troduced. std is the C++ standard library namespace, used e.g. for the STL classes. AMDiS
provides its own namespace AMDiS to avoid potential naming conflicts with other libraries.

Now, the functions f and g will be defined by the classes F and G:

c lass G : p u b l i c Abst rac tFunct ion<double , WorldVector<double> >
{
p u b l i c :

double opera tor ( ) ( const WorldVector<double>& x ) const
{

r e t u r n exp(−10.0 ∗ ( x ∗ x ) ) ;
}

} ;

G is a sub class of the templated class AbstractFunction<R, T> that represents a mapping
from type T to type R. Here, we want to define a mapping from Rdow, implemented by the class
WorldVector<double>, to R, represented by the data type double. The actual mapping is defined
by overloading the operator(). x*x stands for the scalar product of vector x with itself.

The class F is defined in a similar way:

c lass F : p u b l i c Abst rac tFunct ion<double , WorldVector<double> >
{
p u b l i c :

F ( i n t degree ) : Abst rac tFunct ion<double , WorldVector<double> >(degree ) {}

double opera tor ( ) ( const WorldVector<double>& x ) const
{

i n t dow = Global : : getGeo (WORLD) ;
double r2 = ( x ∗ x ) ;
double ux = exp(−10.0 ∗ r2 ) ;
r e t u r n −(400.0 ∗ r2 − 20.0 ∗ dow) ∗ ux ;

}
} ;

F gets the world dimension from the class Global by a call of the static function getGeo(WORLD).
The degree handed to the constructor determines the polynomial degree with which the function
should be considered in the numerical integration. A higher degree leads to a quadrature of higher
order in the assembling process.

Now, we start with the main program:
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/ / ===== main program =====
i n t main ( i n t argc , char∗ argv [ ] )
{

FUNCNAME( ” main ” ) ;

/ / ===== check f o r i n i t f i l e =====
TEST EXIT ( argc >= 2 ) ( ” usage : e l l i p t i n i t f i l e \n ” ) ;

/ / ===== i n i t parameters =====
Parameters : : i n i t ( t rue , argv [ 1 ] ) ;

The macro FUNCNAME defines the current function name that is used for command line output,
e.g. in error messages. The macro TEST_EXIT tests for the condition within the first pair of brack-
ets. If the condition does not hold, an error message given in the second bracket pair is prompted
and the program exits. Here the macro is used to check, whether the parameter file was speci-
fied by the user as command line argument. If this is the case, the parameters are initialized by
Parameters::init(true, argv[1]). The first argument specifies, whether the initialized param-
eters should be printed after initialization for debug reasons. The second argument is the name
of the parameter file.

Now, a stationary problem with name ellipt is created and initialized:

/ / ===== create and i n i t the sca la r problem =====
ProblemStat e l l i p t ( ” e l l i p t ” ) ;
e l l i p t . i n i t i a l i z e ( INIT ALL ) ;

The name argument of the problem is used to identify parameters in the parameter file that
belong to this problem. In this case, all parameters with prefix ellipt-> are associated to this
problem. The initialization argument INIT_ALL means that all problem modules are created in
a standard way. Those are: The finite element space including the corresponding mesh, the
required system matrices and vectors, an iterative solver, an estimator, a marker, and a file writer
for the computed solution. The initialization of these components can be controlled through the
parameter file (see Section 4.1.2).

The next steps are the creation of the adaptation loop and the corresponding AdaptInfo:

/ / === create adapt i n f o ===
Adapt In fo adapt In fo ( ” e l l i p t −>adapt ” ) ;

/ / === create adapt ===
AdaptSta t ionary adapt ( ” e l l i p t −>adapt ” , e l l i p t , adap t In fo ) ;

The AdaptInfo object contains information about the current state of the adaptation loop as
well as user given parameters concerning the adaptation loop, like desired tolerances or maximal
iteration numbers. Using adaptInfo, the adaptation loop can be inspected and controlled at
runtime. Now, a stationary adaptation loop is created, which implements the standard assemble-
solve-estimate-adapt loop. Arguments are the name, again used as parameter prefix, the problem
as implementation of an iteration interface, and the AdaptInfo object. The adaptation loop only
knows when to perform which part of an iteration. The implementation and execution of the single
steps is delegated to an iteration interface, here implemented by the stationary problem ellipt.

The operators now are defined as follows:

/ / ===== create mat r i x opera tor =====
Operator mat r ixOperator ( e l l i p t . getFeSpace ( ) ) ;
mat r ixOperator . addSecondOrderTerm (new Laplace SOT ) ;
e l l i p t . addMatr ixOperator ( matr ixOperator , 0 , 0 ) ;

/ / ===== create rhs opera tor =====
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i n t degree = e l l i p t . getFeSpace()−>getBas isFcts ()−>getDegree ( ) ;
Operator rhsOperator ( e l l i p t . getFeSpace ( ) ) ;
rhsOperator . addZeroOrderTerm (new CoordsAtQP ZOT (new F( degree ) ) ) ;
e l l i p t . addVectorOperator ( rhsOperator , 0 ) ;

We define a matrix operator (left hand side operator) on the finite element space of the problem.
The term −∆u is added to it. Note that the minus sign isn’t explicitly given, but implicitly contained
in Laplace_SOT. With addMatrixOperator we add the operator to the stationary problem defini-
tion. The both zeros represent the position of the operator in the operator matrix. As we are about
to define a scalar equation, there is only the 0/0 position in the operator matrix. The definition of
the right hand side is done in a similar way. We choose the degree of our function to be equal to
the current basis function degree.

Now, we define boundary conditions:

/ / ===== add boundary cond i t i ons =====
e l l i p t . addDi r ich le tBC (1 , 0 , 0 , new G) ;

We have one Dirichlet boundary condition associated with identifier 1. All nodes belonging to
this boundary are set to the value of function G at the corresponding coordinates. In the macro
file (see Section 4.1.3) the Dirichlet boundary is marked with identifier 1, too. So the nodes can
be uniquely determined. As with adding operators to the operator matrix, we have to define the
operator, on which the boundary condition will be applied. Thus we have to provide the matrix
position indices after the boundary identifier.

Finally we start the adaptation loop and afterwards write out the results:

/ / ===== s t a r t adapt ion loop =====
adapt . adapt ( ) ;

/ / ===== w r i t e r e s u l t =====
e l l i p t . w r i t e F i l e s ( adapt In fo , t r ue ) ;

}

The second argument of writeFiles forces the file writer to print out the results. In time
dependent problems it can be useful to write the results only every i-th timestep. To allow this
behavior the second argument has to be false.

4.1.2 Parameter file

The name of the parameter file must be given as command line argument. In the 2d case we call:

> . / e l l i p t i n i t / e l l i p t . dat .2 d

In the following, the content of file init/ellipt.dat.2d is described:

dimension o f wor ld : 2

e l l i p tMesh−>macro f i l e name : . / macro / macro . stand .2 d
e l l i p tMesh−>g loba l re f inements : 0

The dimension of the world is 2, the macro mesh with name elliptMesh is defined in file
./macro/macro.stand.2d (see Section 4.1.3). The mesh is not globally refined before the adap-
tation loop. A value of n for elliptMesh->global refinements means n bisections of every
macro element. Global refinements before the adaptation loop can be useful to save computation
time by starting adaptive computations with a finer mesh.

e l l i p t −>mesh : e l l i p tMesh
e l l i p t −>dim : 2
e l l i p t −>polynomia l degree [ 0 ] : 1
e l l i p t −>components : 1
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Now, we construct the finite element space for the problem ellipt (see Section 4.1.1). We
use the mesh elliptMesh, set the problem dimension to 2, and choose Lagrange basis functions
of degree 1. The number of components, i.e. variables, in the equation is set to 1, since we are
about to define a scalar PDE.

e l l i p t −>so l ve r : cg
e l l i p t −>so lver−>max i t e r a t i o n : 1000
e l l i p t −>so lver−>t o le rance : 1 .e−8
e l l i p t −>so lver−> l e f t precon : diag
e l l i p t −>so lver−>r i g h t precon : no

We use the conjugate gradient method as iterative solver. The solving process stops after
maximal 1000 iterations or when a tolerance of 10−8 is reached. Furthermore, we apply diagonal
left preconditioning, and no right preconditioning.

e l l i p t −>es t ima to r [ 0 ] : r e s i d u a l
e l l i p t −>es t ima to r [0]−> e r r o r norm : 1
e l l i p t −>es t ima to r [0]−>C0: 0.1
e l l i p t −>es t ima to r [0]−>C1: 0.1

As error estimator we use the residual method. The used error norm is the H1-norm (instead
of the L2-norm: 2). Element residuals (C0) and jump residuals (C1) both are weighted by factor
0.1.

e l l i p t −>marker [0]−> s t r a t egy : 2 % 0: no 1: GR 2: MS 3: ES 4:GERS
e l l i p t −>marker [0]−>MSGamma: 0.5

After error estimation, elements are marked for refinement and coarsening. Here, we use the
maximum strategy with γ = 0.5.

e l l i p t −>adapt [0]−> t o le rance : 1e−4
e l l i p t −>adapt [0]−> r e f i n e b i s e c t i o n s : 2

e l l i p t −>adapt−>max i t e r a t i o n : 10

The adaptation loop stops, when an error tolerance of 10−4 is reached, or after maximal 10
iterations. An element that is marked for refinement, is bisected twice within one iteration. Analog
elements that are marked for coarsening are coarsened twice per iteration.

e l l i p t −>output−>f i lename : output / e l l i p t
e l l i p t −>output−>ParaView format : 1

The result is written in ParaView-format to the file output/ellipt.vtu.

4.1.3 Macro file

In Figure 4.2 one can see the macro mesh which is described by the file macro/macro.stand.2d.
First, the dimension of the mesh and of the world are defined:

DIM : 2
DIM OF WORLD: 2

Then the total number of elements and vertices are given:

number o f elements : 4
number o f v e r t i c e s : 5

The next block describes the two dimensional coordinates of the five vertices:
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Figure 4.2: Two dimensional macro mesh

ver tex coord ina tes :
0.0 0.0
1.0 0.0
1.0 1.0
0.0 1.0
0.5 0.5

The first two numbers are interpreted as the coordinates of vertex 0, and so on.
Corresponding to these vertex indices now the four triangles are given:

element v e r t i c e s :
0 1 4
1 2 4
2 3 4
3 0 4

Element 0 consists in the vertices 0, 1 and 4. The numbering is done anticlockwise starting
with the vertices of the longest edge.

It follows the definition of boundary conditions:

element boundaries :
0 0 1
0 0 1
0 0 1
0 0 1

The first number line means that element 0 has no boundaries at edge 0 and 1, and a boundary
with identifier 1 at edge 2. The edge with number i is the edge opposite to vertex number i. The
boundary identifier 1 corresponds to the identifier 1 we defined within the source code for the
Dirichlet boundary. Since all elements of the macro mesh have a Dirichlet boundary at edge 2,
the line 0 0 1 is repeated three times.

The next block defines element neighborships. -1 means there is no neighbor at the corre-
sponding edge. A non-negative number determines the index of the neighbor element.

element neighbours :
1 3 −1
2 0 −1
3 1 −1
0 2 −1
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(a) (b)

Figure 4.3: (a): Solution after 9 iterations, (b): corresponding mesh

This block is optional. If it isn’t given in the macro file, element neighborships are computed
automatically.

4.1.4 Output

Now, the program is started by the call ./ellipt init/ellipt.dat.2d. After 9 iterations the
tolerance is reached and the files output/ellipt.mesh and output/ellipt.dat are written. In
Figure 4.3(a) the solution is shown and in 4.3(b) the corresponding mesh. The visualizations was
done by the VTK based tool CrystalClear.

4.2 Time dependent problem

This is an example for a time dependent scalar problem. The problem is described by the heat
equation

∂tu−∆u = f in Ω ⊂ Rdim ×
(
tbegin, tend

)
(4.5)

u = g on ∂Ω×
(
tbegin, tend

)
(4.6)

u = u0 on Ω×
(
tbegin

)
. (4.7)

We solve the problem in the time interval
(
tbegin, tend

)
with Dirichlet boundary conditions on

∂Ω. The problem is constructed, such that the exact solution is u(x, t) = sin(πt)e−10x2
. So we set

f(x, t) = πcos(πt)e−10x2
−

(
400x2 − 20dow

)
sin(πt)e−10x2

(4.8)

g(x, t) = sin(πt)e−10x2
(4.9)

u0(x) = sin(πtbegin)e−10x2
. (4.10)

We use a variable time discretization scheme. Equation (4.5) is approximated by

unew − uold

τ
−

(
θ∆unew + (1− θ)∆uold

)
= f(·, told + θτ). (4.11)

τ = tnew − told is the timestep size between the old and the new problem time. unew is the
(searched) solution at t = tnew. uold is the solution at t = told, which is already known from the
last timestep. The parameter θ determines the implicit and explicit treatment of ∆u. For θ = 0 we
have the forward explicit Euler scheme, for θ = 1 the backward implicit Euler scheme. θ = 0.5
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1d 2d 3d
source code src/ heat.cc

parameter file init/ heat.dat.1d heat.dat.2d heat.dat.3d
macro file macro/ macro.stand.1d macro.stand.2d macro.stand.3d

output files output/ heat <t>.mesh, heat <t>.dat

Table 4.2: Files of the heat example. In the output file names, <t> is replaced by the time.

Heat

ProblemStatBase ProblemTime-
Interface

ProblemInstatScal
problemStat

Figure 4.4: UML diagram for class Heat.

results in the Crank-Nicholson scheme. If we bring all terms that depend on uold to the right hand
side, the equation reads

unew

τ
− θ∆unew =

uold

τ
+ (1− θ)∆uold + f(·, told + θτ). (4.12)

4.2.1 Source code

Now, we describe the crucial parts of the source code. First, the functions f and g are defined.
In contrast to the ellipt example, the functions now are time dependent. This is implemented by
deriving the function classes also from class TimedObject. This class provides a pointer to the
current time, as well as corresponding setting and getting methods. The usage of a pointer to a
real value allows to manage the current time in one location. All objects that deal with the same
time, point to the same value. In our example, f is evaluated at t = told + θτ , while g (the Dirichlet
boundary function for unew) is evaluated at t = tnew. Function g is implemented as follows:

c lass G : p u b l i c Abst rac tFunct ion<double , WorldVector<double> >,
p u b l i c TimedObject

{
p u b l i c :

double opera tor ( ) ( const WorldVector<double>& x ) const
{

r e t u r n s in ( M PI ∗ (∗ t imePt r ) ) ∗ exp(−10.0 ∗ ( x ∗ x ) ) ;
}

} ;

The variable timePtr is a base class member of TimedObject. This pointer has to be set once
before g is evaluated the first time. Implementation of function f is done in the same way.

Now, we begin with the implementation of class Heat, that represents the instationary problem.
In Figure 4.4, its class diagram is shown. Heat is derived from class ProblemInstat which leads
to following properties:
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Heat implements the ProblemTimeInterface, so the adaptation loop can set the current time
and schedule timesteps.

Heat implements ProblemStatBase in the role as initial (stationary) problem. The adaptation
loop can compute the initial solution through this interface. The single iteration steps can
be overloaded by sub classes of ProblemInstat. Actually, the initial solution is computed
through the method solveInitialProblem of ProblemTimeInterface. But this method is
implemented by ProblemInstat interpreting itself as initial stationary problem.

Heat knows another implementation of ProblemStatBase: This other implementation represents
a stationary problem which is solved within each timestep.

The first lines of class Heat are:

c lass Heat : p u b l i c Prob lemInsta t
{
p u b l i c :

Heat ( ProblemStat &heatSpace )
: Prob lemInsta t ( ” heat ” , heatSpace )

{
t he ta = −1.0;
Parameters : : get (name + ”−> t he ta ” , the ta ) ;
TEST EXIT ( the ta >= 0 ) ( ” the ta not set !\n ” ) ;
the ta1 = the ta − 1 . 0 ;

}

The argument heatSpace is a pointer to the stationary problem which is solved each timestep.
It is directly handed to the base class constructor of ProblemInstat. In the body of the constructor,
θ is read from the parameter file and stored in a member variable. The member variable theta1
stores the value of θ − 1. A pointer to this value is used later as factor in the θ-scheme.

The next lines show the implementation of the time interface.

vo id setTime ( Adapt In fo ∗ adapt In fo )
{

Prob lemInsta t : : setTime ( adapt In fo ) ;
rhsTime = adapt In fo−>getTime ( ) − (1 − t he ta ) ∗ adapt In fo−>getTimestep ( ) ;

}

vo id closeTimestep ( Adapt In fo ∗ adapt In fo )
{

Prob lemInsta t : : c loseTimestep ( adapt In fo ) ;
WAIT ;

}

The method setTime is called by the adaptation loop to inform the problem about the current
time. When this function is reimplemented, one should always call the function in the parent
class, such that all time relavant variables in ProblemInstat will be updated. The right hand side
function f will be evaluated at told +θτ = tnew− (1−θ)τ , the Dirichlet boundary function g at tnew,
which is the current time.

The method closeTimestep is called at the end of each timestep by the adaptation loop. In
the default implementation of ProblemInstat::closeTimestep, the solution is written to output
files, if specified in the parameter file. Note that the base class implementation of a method must
be explicitly called, if the method is overwritten in a sub class. The macro WAIT waits until the
return key is pressed by the user, if the corresponding entry in the parameter file is set to 1. The
macro WAIT_REALLY would wait, independent of parameter settings. If closeTimestep wouldn’t
be overloaded here, the default implementation without the WAIT statement would be called after
each timestep.
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Now, the implementation of the ProblemStatBase interface begins. As mentioned above, the
instationary problem plays the role of the initial problem by implementing this interface.

vo id so lve ( Adapt In fo ∗ adapt In fo )
{

problemStat−>ge tSo lu t i on ()−> i n t e r p o l ( exac tSo lu t ion ) ;
}

vo id est imate ( Adapt In fo ∗ adapt In fo )
{

double errMax , errSum ;
errSum = Error<double > : : L2Err (∗ exac tSo lu t ion ,

∗ ( problemStat−>ge tSo lu t i on ( ) ) ,
0 , &errMax , f a l s e ) ;

adapt In fo−>setEstSum ( errSum , 0 ) ;
adapt In fo−>setEstMax ( errMax , 0 ) ;

}

Here, only the solve and the estimate step are overloaded. For the other steps, there are empty
default implementations in ProblemInstat. Since the mesh is not adapted in the initial problem,
the initial adaptation loop will stop after one iteration. In the solve step, the exact solution is
interpolated on the macro mesh and stored in the solution vector of the stationary problem. In the
estimate step, the L2 error is computed. The maximal element error and the sum over all element
errors are stored in adaptInfo. To make the exact solution known to the problem, we need a
setting function:

vo id se tExac tSo lu t ion ( Abst rac tFunct ion<double , WorldVector<double> > ∗ f c t )
{

exac tSo lu t ion = f c t ;
}

Now, we define some getting functions and the private member variables:

double ∗getThetaPt r ( ) { r e t u r n &the ta ; } ;
double ∗getTheta1Ptr ( ) { r e t u r n &theta1 ; } ;
double ∗getRhsTimePtr ( ) { r e t u r n &rhsTime ; } ;

p r i v a t e :
double the ta ;
double theta1 ;
double rhsTime ;
Abst rac tFunct ion<double , WorldVector<double> > ∗ exac tSo lu t ion ;

} ;

The definition of class Heat is now finished. In the following, the main program is described.

i n t main ( i n t argc , char ∗∗ argv )
{

/ / ===== check f o r i n i t f i l e =====
TEST EXIT ( argc == 2 ) ( ” usage : heat i n i t f i l e \n ” ) ;

/ / ===== i n i t parameters =====
Parameters : : i n i t ( fa l se , argv [ 1 ] ) ;
Parameters : : readArgv ( argc , argv ) ;

/ / ===== create and i n i t s t a t i o n a r y problem =====
ProblemStat heatSpace ( ” heat−>space ” ) ;
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heatSpace . i n i t i a l i z e ( INIT ALL ) ;

/ / ===== create i n s t a t i o n a r y problem =====
Heat heat ( heatSpace ) ;
heat . i n i t i a l i z e ( INIT ALL ) ;

So far, the stationary space problem heatSpace and the instationary problem heat were cre-
ated and initialized. heatSpace is an instance of ProblemStat. heat is an instance of the class
Heat we defined above. heatSpace is given to heat as its stationary problem.

The next step is the creation of the needed AdaptInfo objects and of the instationary adapta-
tion loop:

/ / c reate adapt i n f o f o r heat
Adapt In fo adapt In fo ( ” heat−>adapt ” ) ;

/ / c reate i n i t i a l adapt i n f o
Adapt In fo a d a p t I n f o I n i t i a l ( ” heat−> i n i t i a l −>adapt ” ) ;

/ / c reate i n s t a t i o n a r y adapt
Adap t Ins ta t i ona ry adap t I ns ta t ( ” heat−>adapt ” ,

heatSpace ,
adapt In fo ,
heat ,
a d a p t I n f o I n i t i a l ) ;

The object heatSpace is handed as ProblemIterationInterface (implemented by class
ProblemStat) to the adaptation loop. heat is interpreted as ProblemTimeInterface (implemented
by class ProblemInstat).

The function g is declared in the following way:

/ / ===== create boundary f u n c t i o n s =====
G ∗boundaryFct = new G;
boundaryFct−>setTimePtr ( heat . getTime ( ) ) ;
heat . se tExac tSo lu t ion ( boundaryFct ) ;
heatSpace . addDi r ich le tBC (1 , boundaryFct ) ;

/ / ===== create rhs f u n c t i o n s =====
i n t degree = heatSpace . getFeSpace()−>getBas isFcts ()−>getDegree ( ) ;
F ∗ rhsFct = new F( degree ) ;
rhsFct−>setTimePtr ( heat . getRhsTimePtr ( ) ) ;

The functions interpreted as TimedObjects are linked with the corresponding time pointers by
setTimePtr. The boundary function is handed to heat as exact solution and as Dirichlet boundary
function with identifier 1 to heatSpace.

Now, we define the operators:

/ / ===== create opera tors =====
double one = 1 . 0 ;
double zero = 0 . 0 ;

/ / c reate lap lace
Operator A( heatSpace . getFeSpace ( ) ) ;
A . addSecondOrderTerm (new Laplace SOT ) ;
A . setUhOld ( heat . ge tO ldSo lu t ion ( 0 ) ) ;
i f ( ∗ ( heat . getThetaPt r ( ) ) != 0 .0 )

heatSpace . addMatr ixOperator (A, 0 , 0 , heat . getThetaPt r ( ) , &one ) ;
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i f ( ∗ ( heat . getTheta1Ptr ( ) ) != 0 .0 )
heatSpace . addVectorOperator (A, 0 , heat . getTheta1Ptr ( ) , &zero ) ;

Operator A represents −∆u. It is used as matrix operator on the left hand side with factor θ
and as vector operator on the right hand side with factor −(1−θ) = θ−1. These assemble factors
are the second arguments of addMatrixOperator and addVectorOperator. The third argument
is the factor used for estimation. In this example, the estimator will consider the operator only on
the left hand side with factor 1. On the right hand side the operator is applied to the solution of the
last timestep. So the old solution is handed to the operator by setUhOld.

/ / c reate zero order opera tor
Operator C( heatSpace . getFeSpace ( ) ) ;
C. addZeroOrderTerm (new Simple ZOT ) ;
C. setUhOld ( heat . ge tO ldSo lu t ion ( 0 ) ) ;
heatSpace . addMatr ixOperator (C, 0 , 0 , heat . getInvTau ( ) , heat . getInvTau ( ) ) ;
heatSpace . addVectorOperator (C, 0 , heat . getInvTau ( ) , heat . getInvTau ( ) ) ;

The Simple_ZOT of operator C represents the zero order terms for the time discretization. On
both sides of the equation u are added with the factor 1

τ for both, assembling and error estimation.
The inverse of the current timestep is returned by the function getInvTau(), which is a member
of the class ProblemInstat.

/ / c reate RHS opera tor
Operator F ( heatSpace . getFeSpace ( ) ) ;
F . addZeroOrderTerm (new CoordsAtQP ZOT ( rhsFct ) ) ;
heatSpace . addVectorOperator (F , 0 ) ;

CoordsAtQP_ZOT is a zero order term that evaluates a given function fct at all needed quadra-
ture points. At the left hand side, it would represent the term fct(x, t) · u, on the right hand side,
just fct(x, t). Note that the old solution isn’t given to the operator here. Otherwise the term would
represent fct(x, t) · uold on the right hand side.

Finally, the function g is created. This function is used for both, as the exact solution in the
initial problem and as the Dirichlet boundary function. To the last, the adaption loop is started:

/ / ===== create boundary f u n c t i o n s =====
G ∗boundaryFct = new G;
boundaryFct−>setTimePtr ( heat . getTime ( ) ) ;
heat . se tExac tSo lu t ion ( boundaryFct ) ;
heatSpace . addDi r ich le tBC (1 , 0 , 0 , boundaryFct ) ;

/ / ===== s t a r t adapt ion loop =====
i n t errorCode = adap t I ns ta t . adapt ( ) ;

}

Note that boundaries must be set after all operators were defined.

4.2.2 Parameter file

In this section, we show only the relevant parts of the parameter file heat.dat.2d.
First the parameter θ for the time discretization is defined:

heat−>t he ta : 1.0

Then we define the initial timestep and the time interval:

heat−>adapt−>t imestep : 0.1
heat−>adapt−>s t a r t t ime : 0.0
heat−>adapt−>end t ime : 1.0
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Now, tolerances for the space and the time error are determined:

heat−>adapt [0]−> t o le rance : 0.05
heat−>adapt [0]−> t ime to le rance : 0.05

heat−>adapt−>s t r a t egy : 1

If strategy is 0, an explicit time strategy with fixed timestep size is used. A value of 1 stands
for the implicit strategy.

The following lines determine, whether coarsening is allowed in regions with sufficient small
errors, and how many refinements or coarsenings are performed for marked elements.

heat−>adapt [0]−>coarsen al lowed : 1
heat−>adapt [0]−> r e f i n e b i s e c t i o n s : 2
heat−>adapt [0]−>coarsen b i s e c t i o n s : 2

Now, the output behavior is determined:

heat−>space−>output−>f i lename : output / heat
heat−>space−>output−>ParaView format : 1
heat−>space−>output−>ParaView animat ion : 1
heat−>space−>output−>w r i t e every i−th t imestep : 1
heat−>space−>output−>append index : 1
heat−>space−>output−>index leng th : 6
heat−>space−>output−>index decimals : 3

In this example, all output filenames start with prefix output/heat and end with the extension
.vtu. Output is written after every 10th timestep. The time of the single solution is added after
the filename prefix with 6 letters, three of them are decimals. The solution for t = 0 e.g. would
be written to the file output/heat00.000.vtu. If the parameter ParaView animation is enabled,
AMDiS writes for the whole simulation one ParaView pvd file (in this case output/heat.pvd)
including the names of all vtu files that were created. This file makes it very easy to view and
analyze all the results of an instationary problem in ParaView.

Finally, we set parameter WAIT to 0. If the variable is set to 1, each call of the macro WAIT in
the application will lead to an interruption of the program, until the return key is pressed.

WAIT : 0

4.2.3 Macro file

We again use the macro file macro/macro.stand.2d, which was described in Section 4.1.3.

4.2.4 Output

As mentioned above, the output files look like output/heat00.000.vtu. Depending on the corre-
sponding value in the parameter file only the solution after every i-th timestep is written. In Figure
4.5, the solution at three timesteps is visualized.

4.3 Systems of PDEs

In this example, we show how to implement a system of coupled PDEs. We define

−∆u = f (4.13)
u− v = 0. (4.14)
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t ≈ 0.2 t ≈ 0.47 t ≈ 0.81

Figure 4.5: The solution at three different timesteps.

1d 2d 3d
source code src/ vecellipt.cc

parameter file init/ vecellipt.dat.1d vecellipt.dat.2d vecellipt.dat.3d
macro file macro/ macro.stand.1d macro.stand.2d macro.stand.3d

output files output/ vecellipt comp<c>.mesh, vecellipt comp<c>.dat

Table 4.3: Files of the vecellipt example. In the output file names, <c> is replaced by the
component number.

For the first equation, we use the boundary condition and definition of function f from Section 4.1.
The second equation defines a second solution component v, which is coupled to u, such that
v = u. For the second equation, no boundary conditions have to be defined. The system can be
written in matrix-vector form as (

−∆ 0
I −I

) (
u
v

)
=

(
f
0

)
, (4.15)

where I stands for the identity and 0 for a zero operator (or for the absence of any operator). This
is a very simple example without practical relevance. But it is appropriate to demonstrate the main
principles of implementing vector valued problems.

4.3.1 Source code

Instead of a scalar problem, we now create and initialize the vector valued problem vecellipt:

ProblemStat v e c e l l i p t ( ” v e c e l l i p t ” ) ;
v e c e l l i p t . i n i t i a l i z e ( INIT ALL ) ;

The AdaptInfo constructor is called with the number of problem components, which is defined
in the parameter file.

/ / === create adapt i n f o ===
Adapt In fo adapt In fo ( ” v e c e l l i p t −>adapt ” , v e c e l l i p t . getNumComponents ( ) ) ;

/ / === create adapt ===
AdaptSta t ionary adapt ( ” v e c e l l i p t −>adapt ” , v e c e l l i p t , adap t In fo ) ;

The adaptation loop doesn’t care about the component number. It treats vecellipt only as
implementation of the iteration interface.

The Dirichlet boundary condition for the first equation is defined by
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/ / ===== add boundary cond i t i ons =====
v e c e l l i p t . addDi r ich le tBC (1 , 0 , 0 , new G) ;

The first argument is the condition identifier, as in the scalar case. The second and third
argument define the the component, the boundary condition belongs to.

The operator definitions for the first equation are:

/ / ===== create opera tors =====
Operator matr ixOperator00 ( v e c e l l i p t . getFeSpace ( 0 ) , v e c e l l i p t . getFeSpace ( 0 ) ) ;
matr ixOperator00 . addSecondOrderTerm (new Laplace SOT ) ;
v e c e l l i p t . addMatr ixOperator (& matr ixOperator00 , 0 , 0 ) ;

i n t degree = v e c e l l i p t . getFeSpace(0)−>getBas isFcts ()−>getDegree ( ) ;
Operator rhsOperator0 ( v e c e l l i p t . getFeSpace ( 0 ) ) ;
rhsOperator0 . addZeroOrderTerm (new CoordsAtQP ZOT (new F( degree ) ) ) ;
v e c e l l i p t . addVectorOperator (& rhsOperator0 , 0 ) ;

Operator matrixOperator00 represents the −∆ operator. Each operator belongs to two finite
element spaces, the row space and the column space. If an operator has the position (i, j) in
the operator matrix, the row space is the finite element space of component i and the column
space is the finite element space of component j. The finite element spaces can differ in the
used basis function degree. The underlying meshes must be the same. After matrixOperator00
is created, it is handed to the problems operator matrix at position (0, 0). The right hand side
operator rhsOperator0 only needs a row space, which is the finite element space of component
0 (u). It is handed to the operator vector at position 0.

Now, the operators for the second equation are defined:

Operator matr ixOperator10 ( v e c e l l i p t . getFeSpace ( 1 ) , v e c e l l i p t . getFeSpace ( 0 ) ) ;
matr ixOperator10 . addZeroOrderTerm (new Simple ZOT ) ;
v e c e l l i p t . addMatr ixOperator ( matr ixOperator10 , 1 , 0 ) ;

Operator matr ixOperator11 ( v e c e l l i p t . getFeSpace ( 1 ) , v e c e l l i p t . getFeSpace ( 1 ) ) ;
matr ixOperator11 . addZeroOrderTerm (new Simple ZOT ( −1 .0 ) ) ;
v e c e l l i p t . addMatr ixOperator ( matr ixOperator11 , 1 , 1 ) ;

Note that the operator matrixOperator10 can have different finite element spaces, if the
spaces of the two components differ. The operators I and −I are implemented by Simple_ZOT,
once with a fixed factor of 1 and once with a factor of −1.

4.3.2 Parameter file

First, the number of components and the basis function degrees are given. We use Lagrange
polynomials of degree 1 for both components.

v e c e l l i p t −>components : 2

v e c e l l i p t −>polynomia l degree [ 0 ] : 1
v e c e l l i p t −>polynomia l degree [ 1 ] : 1

For most small and mid-size linear systems, direct solver perform much better than iterative
ones. Therefore, we make use of the direct solver UMFPACK in this example.

v e c e l l i p t −>so l ve r : umfpack

All other solver parameters are than ommited because they need to be defined only for iterative
solvers.

Each equation can have its own estimator. In this case, adaptivity should be managed only by
the first component. So the second equation has no estimator.
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1d 2d 3d
source code src/ neumann.cc

parameter file init/ neumann.dat.1d neumann.dat.2d neumann.dat.3d
macro file macro/ neumann.macro.1d neumann.macro.2d neumann.macro.3d

output files output/ neumann.mesh, neumann.dat

Table 4.4: Files of the neumann example.

v e c e l l i p t −>es t ima to r [ 0 ] : r e s i d u a l
v e c e l l i p t −>es t ima to r [ 1 ] : 0

Also the marking strategy can differ between the components. Refinement is done, if at least
one component has marked an element for refinement. Coarsening only is done, if all components
have marked the element for coarsening. In our example, only component 0 will mark elements.

v e c e l l i p t −>marker [0]−> s t r a t egy : 2
v e c e l l i p t −>marker [1]−> s t r a t egy : 0

We have only one adaptation loop, which does maximal 10 iterations. The tolerance can
be determined for each component. The total tolerance criterion is fulfilled, if all criteria of all
components are fulfilled.

v e c e l l i p t −>adapt−>max i t e r a t i o n : 10

v e c e l l i p t −>adapt [0]−> t o le rance : 1e−2
v e c e l l i p t −>adapt [1]−> t o le rance : 1e−3

All components can be written into one file:

v e c e l l i p t −>output−>f i lename : output / v e c e l l i p t
v e c e l l i p t −>output−>ParaView format : 1

As long as all FE spaces are equal, i.e., all components are discretized on the same mesh with
the same basis functions, all components can and should be written to one file.

4.3.3 Macro file

We again use the macro file macro/macro.stand.2d, which was described in Section 4.1.3.

4.3.4 Output

Component 0 of the solution (approximation of u) is written to the files output/vecellipt0.mesh
and output/vecellipt0.dat. Component 1 of the solution (approximation of v) is written to the
files output/vecellipt1.mesh and output/vecellipt1.dat. The two components are visualized
in Figure 4.6.

4.4 Neumann boundary conditions

In this example, we solve the problem defined in Section 4.1. But now, we set the domain Ω
to [−0.5; 0.5]2, so the source f is located in the middle of Ω. Furthermore, we use Neumann
boundary conditions on the left and on the right side of Ω. We set A∇u · ν = 1 at the Neumann
boundary. So, the derivative in direction of the surface normal is set to 1 at these points. The rest
of the boundary keeps unchanged (Dirichlet boundary, set to the true solution).
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component 0 component 1

Figure 4.6: The two solution components for u and v.

4.4.1 Source code

Only a few changes in the source code are necessary to apply Neumann boundary conditions.
First, we define the function N = 1.

c lass N : p u b l i c Abst rac tFunct ion<double , WorldVector<double> >
{
p u b l i c :

double opera tor ( ) ( const WorldVector<double>& x ) const
{

r e t u r n 1 . 0 ;
}

} ;

In the main program we add the boundary conditions to our problem neumann.

i n t main ( i n t argc , char∗ argv [ ] )
{

. . .
neumann . addNeumannBC(1 , 0 , 0 , new N) ;
neumann . addDi r ich le tBC (2 , 0 , 0 , new G) ;
. . .

}

Since the Dirichlet condition has a higher ID, it has a higher priority against the Neumann
boundary condition. This is important, where different conditions meet each other in some points.
In this example, these are the corner points of Ω. If Dirichlet boundary conditions are used to-
gether with boundary conditions of other type, the Dirichlet conditions should always have the
higher priority.

4.4.2 Parameter file

In the parameter file, we use the file ./macro/neumann.macro.2d as macro mesh file, described
in the next section.
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4.4.3 Macro file

The file neumann.macro.2d is listed below:

DIM : 2
DIM OF WORLD: 2

number o f v e r t i c e s : 5
number o f elements : 4

ver tex coord ina tes :
−0.5 −0.5

0.5 −0.5
0.5 0.5

−0.5 0.5
0.0 0.0

element v e r t i c e s :
0 1 4
1 2 4
2 3 4
3 0 4

element boundaries :
0 0 2
0 0 1
0 0 2
0 0 1

In contrast to the standard file macro.stand.2d, here the vertex coordinates are shifted to
describe the domain [−0.5; 0.5]2. Furthermore, the boundary block changed. The elements 0 and
2 have the Dirichlet boundary with ID 2 at edge 2. Elements 1 and 3 have the Neumann boundary
condition with ID 1 applied to their local edge 2.

4.4.4 Output

In Figure 4.7, the solution is shown. At the Neumann boundaries, one can see the positive slope.
At Dirichlet boundaries, the solution is set to g(x).

4.5 Periodic boundary conditions

Periodic boundary conditions allow to simulate an effectively infinite tiled domain, where the finite
domain Ω is interpreted as one tile of the infinte problem domain. The solution outside of Ω can be
constructed by periodically continue the solution within Ω. In Figure 4.8 two examples for periodic
boundary conditions on a two dimensional domain are illustrated. On the left hand side example,
the upper and the lower part of the boundary as well as the left and the right part of the boundary
are assigned to each other as periodic boundary. This results in a solution, which tiles the infinte
plane. On the right hand side example, only the left and the right part of the domain boundary are
assigned to each other, which results in a infinte band.

In AMDiS, there are two ways to implement periodic boundary conditions:

1. Changing the mesh topology (mode 0): Before the computation is started, the topology of
the macro mesh is changed. Two vertices that are assigned to each other by a periodic
boundary condition, are replaced by one single vertex, which is now treated as an inner
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Figure 4.7: Solution of the problem with Neumann boundary conditions at two sides.

 

 

Figure 4.8: Two dimensional domain with periodic boundary conditions in both dimensions (left)
and in only one dimension (right). In the first case, the solution at Ω can be propagated to the
whole plane of R2. In the second case, the solution only describes a band within R2

0.0 1.0 2.02.0 3.01.0

0.0 1.0 1.0 2.0 2.03.0

Figure 4.9: A one dimensional mesh with vertex coordinates stored at the elements and a cor-
responding periodic mesh with changed mesh topology. Note that the geometric data are not
changed. The coordinates of the first vertex depend on the element it belongs to.
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1d 2d 3d
source code src/ periodic.cc

parameter file init/ periodic.dat.1d periodic.dat.2d periodic.dat.3d
periodic file init/ periodic.per.1d periodic.per.2d periodic.per..3d
macro file macro/ periodic.macro.1d periodic.macro.2d periodic.macro.3d

output files output/ periodic.mesh, periodic.dat

Table 4.5: Files of the periodic example.

vertex of the mesh (if it is not part of any other boundary). Since geometric data like co-
ordinates are stored at elements and not at vertices, this modification does not change the
geometry of the problem. Topological information, like element neighborhood, does change.
The method is illustrated in Figure 4.9.

2. Modify the linear system of equations in each iteration (mode 1): Sometimes it is neces-
sary to store geometric information at vertices. E.g., if moving meshes are implemented
with parametric elements, a DOF vector may store the coordinates. In this case, the mesh
topology keeps unchanged, and the periodic boundary conditions are applied, like any other
boundary condition, after the assemblage of the linear system of equations. In the applica-
tion source code a boundary condition object has to be created, and in the macro file the
periodic boundary must be specified.

In this section, we show how to use both variants of periodic boundary conditions. Again, we
use the problem defined in Section 4.1. We choose Ω = [−0.2; 0.8] × [−0.5; 0.5] (we do not use
Ω = [−0.5; 0.5]2, because in this example periodic boundary conditions would then be equal to
the trivial zero flux conditions).

We apply a periodic boundary condition which connects the left and the right edge of Ω. Since
we do not know the exact solution of this periodic problem, we apply zero Dirichlet conditions at
the lower and upper edge of the domain.

4.5.1 Source code

If we use mode 0, no modifications in the source code have to be made. For mode 1, we have to
add a periodic boundary condition object to the problem.

p e r i o d i c . addPeriodicBC (−1 , 0 , 0 ) ;

Note that periodic boundary conditions must be described by negative numbers.

4.5.2 Parameter file

In the parameter file, we add an link to the periodic file.

periodicMesh−>p e r i o d i c f i l e : . / i n i t / p e r i o d i c . per .2 d

The periodic file periodic.per.2d contains the needed periodic information for the mesh.

assoc ia t i ons : 2

mode bc e l1 − l o c a l v e r t i c e s <−> e l2 − l o c a l v e r t i c e s
1 −1 4 1 2 7 2 1
1 −1 0 1 2 3 2 1

First, the number of edge associations (point associations in 2d, face associations in 3d) is
given. Then each association is described in one line. The first entry is the mode which should
be used for this periodic association. If the mode is 1, the next entry specifies the identifier of
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Figure 4.10: Macro mesh for the two dimensioanl periodic problem.

the used boundary condition. This identifier also must be used in the source code and in the
macro file. If the mode is 0, the identifier is ignored. The rest of the line describes, which (local)
vertices of which elements are associated with each other. The first association in this example
is interpreted as follows: The local vertices 1 and 2 of element 4 are associated with the vertices
2 and 1 of element 7. Or more precisely, vertex 1 of element 4 is associated with vertex 2 of
element 7, and vertex 2 of element 4 with vertex 1 of element 7.

4.5.3 Macro file

To avoid degenerated elements, one macro element must not contain two vertices which are
associated with each other. Therefore, we choose a macro mesh with a few more elements,
showed in Figure 4.10.

The corresponding file periodic.macro.2d looks like:

DIM : 2
DIM OF WORLD: 2

number o f elements : 8
number o f v e r t i c e s : 9

element v e r t i c e s :
1 3 0
3 1 4
2 4 1
4 2 5
4 6 3
6 4 7
5 7 4
7 5 8

element boundaries :
−1 1 0



32 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

0 0 0
0 1 0

−1 0 0
−1 0 0

0 1 0
0 0 0

−1 1 0

ver tex coord ina tes :
−0.2 −0.5

0.3 −0.5
0.8 −0.5

−0.2 0.0
0.3 0.0
0.8 0.0

−0.2 0.5
0.3 0.5
0.8 0.5

element neighbours :
3 −1 1
2 4 0
1 −1 3
0 6 2
7 1 5
6 −1 4
5 3 7
4 −1 6

Compared to the macro file of Section 4.1.3, the vertex coordinates are shifted by -0.2 in
x-direction.

In the boundary block −1 specifies the periodic boundary. If we use mode 0, this boundaries
are ignored (Here, the minus sign becomes important! Only boundary conditions with negative
IDs are recognized as periodic boundaries and can be ignored if they are not used).

In the neighbors block, neighborships between elements that are connected by a periodic edge
(point/face) are added. Note that this must also be done for mode 1 periodic boundaries.

4.5.4 Output

In Figure 4.11, the solution of our periodic problem is shown as height field at the left hand side.
At the right hand side, one can see iso lines for the values 0.1, 0.2, . . . , 1.1.

4.6 Projections

In AMDiS, projections can be applied to the vertex coordinates of a mesh. There are two types of
projections:

1. Boundary projections: Only vertices at the domain boundary are projected.

2. Volume projections: All vertices of the mesh are projected.

Projections are applied to all (boundary) vertices of the macro mesh and to each new (boundary)
vertex, created during adaptive refinements. In Figure 4.12, this is illustrated for a two dimensional
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Figure 4.11: Solution of the problem with periodic boundary conditions at two sides (left) and iso
lines of the solution for the values 0.1, 0.2, . . . , 1.1 (right).

Figure 4.12: Boundary projection for a two dimensional mesh. The boundary vertices of the mesh
are projected on the circle.

mesh which boundary vertices are successively projected to a circle. In Figure 4.13 the vertices
of a one dimensional mesh are successively projected on the circle.

In this section, we give an example for both projection types. As projection we choose the
projection to the unit sphere in 3d. In the first example, we start with the three dimensional cube
[−1, 1]3 and solve the three dimensional version of problem 4.1 in it. Furthermore, we apply a
boundary projection to the unit sphere. In the second example, we set the right hand side f of
equation (4.1) to 2x0 (x0 is the first component of x), and solve on the two dimensional surface
of the sphere. Here, we start with a macro mesh that defines the surface of a cube and apply a
volume projection to it.

1d 2d 3d
source code src/ sphere.cc

parameter file init/ - - sphere.dat.3d
macro file macro/ - - sphere.macro.3d

output files output/ sphere.mesh, sphere.dat

Table 4.6: Files of the sphere example.
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Figure 4.13: Volume projection for the one dimensional mesh. All vertices of this mesh are pro-
jected on the circle.

1d 2d 3d
source code src/ ball.cc

parameter file init/ - - ball.dat.3d
macro file macro/ - - ball.macro.3d

output files output/ ball.mesh, ball.dat

Table 4.7: Files of the ball example.

4.6.1 Source code

First we define the projection by implementing a sub class BallProject of the base class
Projection.

c lass B a l l P r o j e c t : p u b l i c P r o j e c t i o n
{
p u b l i c :

B a l l P r o j e c t ( i n t id ,
Pro jec t ionType type ,
WorldVector<double> &center ,
double rad ius )

: P r o j e c t i o n ( id , type ) ,
cen te r ( center ) ,
r ad i us ( rad ius )

{}

vo id p r o j e c t ( WorldVector<double> &x )
{

x −= cen te r ;
double norm = s q r t ( x∗x ) ;
TEST EXIT ( norm != 0 . 0 ) ( ” can ’ t p r o j e c t vec to r x\n ” ) ;
x ∗= r a d i us / norm ;
x += cen te r ;

}

pro tec ted :
WorldVector<double> cen te r ;
double r a d i us ;

} ;
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First, in the constructor, the base class constructor is called with a projection identifier and
the projection type which can be BOUNDARY_PROJECTION or VOLUME_PROJECTION. The projection
identifier is used to associated a projection instance to projections defined in the macro file. The
method project implements the concrete projection of a point x in world coordinates.

If we compute on the surface, we redefine the function f .

c lass F : p u b l i c Abst rac tFunct ion<double , WorldVector<double> >
{
p u b l i c :

F ( i n t degree ) : Abst rac tFunct ion<double , WorldVector<double> >(degree ) {}

double opera tor ( ) ( const WorldVector<double>& x ) const
{

r e t u r n −2.0 ∗ x [ 0 ] ;
}

} ;

In the main program, we create an instance of BallProject with ID 1, center 0 and radius 1. If
we solve in the three dimensional volume of the sphere, the projection type is BOUNDARY_PROJECTION,
because we project only boundary vertices to the sphere.

/ / ===== create p r o j e c t i o n =====
WorldVector<double> ba l lCen te r ;
ba l lCen te r . se t ( 0 . 0 ) ;
new B a l l P r o j e c t (1 ,

BOUNDARY PROJECTION,
ba l lCenter ,
1 . 0 ) ;

If we solve on the two dimensional surface of the sphere, the projection type is VOLUME_PROJECTION,
because all vertices of the mesh are projected.

/ / ===== create p r o j e c t i o n =====
WorldVector<double> ba l lCen te r ;
ba l lCen te r . se t ( 0 . 0 ) ;
new B a l l P r o j e c t (1 ,

VOLUME PROJECTION,
ba l lCenter ,
1 . 0 ) ;

4.6.2 Parameter file

First, we present the parameter file for the volume projection case (two dimensional mesh).

dimension o f wor ld : 3

sphereMesh−>macro f i l e name : . / macro / sphere macro .3 d
sphereMesh−>g loba l re f inements : 10

sphere−>mesh : sphereMesh
sphere−>dim : 2
sphere−>polynomia l degree [ 0 ] : 1

sphere−>so l ve r : cg
sphere−>so lver−>max i t e r a t i o n : 100
sphere−>so lver−>t o le rance : 1 .e−8
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sphere−>so lver−> l e f t precon : diag

sphere−>es t ima to r : no
sphere−>marker−>s t r a t egy : 0

sphere−>output−>f i lename : output / sphere
sphere−>output−>AMDiS format : 1
sphere−>output−>AMDiS mesh ext : . mesh
sphere−>output−>AMDiS data ext : . dat

The world dimension is 3, whereas the mesh dimension is set to 2. We use a macro mesh
which defines the surface of a cube, defined in ./macro/sphere_macro.3d, and apply 10 global
refinements to it. In this example we do not use adaptivity. Thus, no estimator and no marker is
used.

Now, we show the parameter file for the boudary projection case (three dimensional mesh).

dimension o f wor ld : 3

ballMesh−>macro f i l e name : . / macro / macro . b a l l .3 d
ballMesh−>g loba l re f inements : 15

b a l l−>mesh : ballMesh
b a l l−>dim : 3
b a l l−>polynomia l degree : 1

b a l l−>so l ve r : cg
b a l l−>so lver−>max i t e r a t i o n : 1000
b a l l−>so lver−>t o le rance : 1 .e−8
b a l l−>so lver−> l e f t precon : diag

b a l l−>es t ima to r : no
b a l l−>marker−>s t r a t egy : 0

b a l l−>output−>f i lename : output / b a l l
b a l l−>output−>AMDiS format : 1
b a l l−>output−>AMDiS mesh ext : . mesh
b a l l−>output−>AMDiS data ext : . dat

The macro mesh is a three dimensional cube, defined in ./macro/macro.ball.3d, and 15
times globally refined.

4.6.3 Macro file

First, the macro file for the two dimensional mesh.

DIM : 2
DIM OF WORLD: 3

number o f v e r t i c e s : 8
number o f elements : 12

ver tex coord ina tes :
−1.0 1.0 −1.0

1.0 1.0 −1.0
1.0 1.0 1.0
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−1.0 1.0 1.0
−1.0 −1.0 −1.0

1.0 −1.0 −1.0
1.0 −1.0 1.0

−1.0 −1.0 1.0

element v e r t i c e s :
3 1 0
1 3 2
2 5 1
5 2 6
6 4 5
4 6 7
7 0 4
0 7 3
2 7 6
7 2 3
1 4 0
4 1 5

element boundaries :
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

p r o j e c t i o n s :
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0

In the projections block, the projection IDs for each element are listed. There is one entry for
each side of each element. Since we use volume projection, here, only the first entry of a line is
used.

Now, we list the macro file for the three dimensional volume mesh.

DIM : 3
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DIM OF WORLD: 3

number o f v e r t i c e s : 8
number o f elements : 6

ver tex coord ina tes :
−1.0 −1.0 0.0

0.0 −1.0 −1.0
0.0 −1.0 1.0
1.0 −1.0 0.0
0.0 1.0 −1.0
1.0 1.0 0.0

−1.0 1.0 0.0
0.0 1.0 1.0

element v e r t i c e s :
0 5 4 1
0 5 3 1
0 5 3 2
0 5 4 6
0 5 7 6
0 5 7 2

element boundaries :
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

element neighbours :
−1 −1 1 3
−1 −1 0 2
−1 −1 5 1
−1 −1 4 0
−1 −1 3 5
−1 −1 2 4

p r o j e c t i o n s :
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

Here, we use boundary projections. In the boundary block for each boundary side of an
element the projection ID is given.

4.6.4 Output

In Figure 4.14, the solution of the two dimensional problem is shown on a successively refined
mesh whose vertices are projected on the sphere. The finer the mesh, the better is the approxi-
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Figure 4.14: Surface of a cube successively refinend and projected on the sphere.

(a) (b) (c)

Figure 4.15: (a): Solution of the two dimensional problem on the surface of the sphere, (b): Halfed
sphere, (c): Solution of the three dimensional problem (halfed ball).

mation to the sphere.
In Figure 4.15 (a), the final solution of the two dimensional problem is shown, Figure 4.15 (b)

shows the halfed sphere to demonstrate that the solution is really defined on the sphere. The
solution of the three dimensional problem is shown in Figure 4.15 (c).

4.7 Parametric elements

With parametric elements, problems can be solved on meshes which dimensions are not neces-
sarily equal to the world dimension. Therefore, problems on arbitrary manifolds can be solved.
Furthermore, the vertex coordinates of the mesh can be flexible. Hence, moving meshes can be
implemented.

In this section, we solve equation (4.1) with f = 2x0 (x0 is the first component of x) on a torus.
Then we rotate the torus about the y-axis and solve the problem again.

The torus can be created by revolving a circle about an axis coplanar with the circle, which
does not touch the circle. We call r1 the radius of the revolved circle and r2 the radius of the
revolution, which is the distance of the center of the tube to the center of the torus. In Figure 4.16,
a torus with its two radii r1 and r2 is shown.

We create a torus with center (0; 0; 0) and the rotation axis in z-direction (0; 0; 1). The projection
of a point x0 on the torus is implemented by the following steps:

1. x1 is the projection of x0 on the xy-plane

2. x2 = x1
r1

||x1|| . Projection of x1 on the sphere with radius r1 with center 0. Thereby, x2 is used
as the center of a sphere with radius r2.
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r2
r 1

Figure 4.16: A torus and a halfed torus with the two radiuses r1 and r2.

1d 2d 3d
source code src/ torus.cc

parameter file init/ - - torus.dat.3d
macro file macro/ - - torus.macro.3d

output files output/ torus.mesh/.dat, rotation1.mesh/.dat, rotation2.mesh/dat

Table 4.8: Files of the torus example.

3. x3 = x0−x2. Move coordinate system into the center of the sphere with center x2. Thereby,
x3 contains the coordinates of x0 in this new coordinate system.

4. x4 = x3
r2

||x3|| . Thereby, x4 is the projection of x3 on the sphere with radius r2.

5. x5 = x4 + x2. Thereby, x5 contains the coordinates of x4 in the original coordinate system.
It is the projection of x0 on the torus.

4.7.1 Source code

First, we define the rotation about the y-axis, which is used later to rotate the whole torus and the
right hand side function.

c lass YRotat ion
{
p u b l i c :

s t a t i c WorldVector<double>& r o t a t e ( WorldVector<double> &x , double angle )
{

double x0 = x [ 0 ] ∗ cos ( angle ) + x [ 2 ] ∗ s in ( angle ) ;
x [ 2 ] = −x [ 0 ] ∗ s in ( angle ) + x [ 2 ] ∗ cos ( angle ) ;
x [ 0 ] = x0 ;
r e t u r n x ;

}
} ;

The right hand side function f has to follow the rotation of the torus.

c lass F : p u b l i c Abst rac tFunct ion<double , WorldVector<double> >
{
p u b l i c :

F ( i n t degree )
: Abst rac tFunct ion<double , WorldVector<double> >(degree ) ,

r o t a t i o n ( 0 . 0 )
{} ;
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double opera tor ( ) ( const WorldVector<double>& x ) const
{

WorldVector<double> myX = x ;
YRotat ion : : r o t a t e (myX, − r o t a t i o n ) ;
r e t u r n = −2.0 ∗ myX [ 0 ] ;

}

vo id r o t a t e ( double r )
{

r o t a t i o n += r ;
}

p r i v a t e :
double r o t a t i o n ;

} ;

Every time, the mesh is rotated, the right hand side function will be informed over the method
rotate.

Now, we implement the projection on the torus.

c lass TorusPro jec t : p u b l i c P r o j e c t i o n
{
p u b l i c :

TorusPro jec t ( i n t id ,
Pro jec t ionType type ,
double radius1 ,
double rad ius2 )

: P r o j e c t i o n ( id , type ) ,
rad ius1 ( rad ius1 ) ,
rad ius2 ( rad ius2 )

{} ;

v i r t u a l ˜ TorusPro jec t ( ) {}

vo id p r o j e c t ( WorldVector<double> &x )
{

WorldVector<double> xPlane = x ;
xPlane [ 2 ] = 0 . 0 ;

double norm = std : : s q r t ( xPlane∗xPlane ) ;
TEST EXIT ( norm != 0 . 0 ) ( ” can ’ t p r o j e c t vec to r x\n ” ) ;

WorldVector<double> center = xPlane ;
center ∗= rad ius1 / norm ;

x −= center ;

norm = std : : s q r t ( x∗x ) ;
TEST EXIT ( norm != 0 . 0 ) ( ” can ’ t p r o j e c t vec to r x\n ” ) ;
x ∗= rad ius2 / norm ;

x += center ;
} ;
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pro tec ted :
double rad ius1 ;
double rad ius2 ;

} ;

In the main program, we create a torus projection as VOLUME_PROJECTION with ID 1. The values
of r1 and r2 are chosen, such that the resulting torus is completely surrounded by the macro mesh
that is defined later.

i n t main ( i n t argc , char∗ argv [ ] )
{

FUNCNAME( ” to rus main ” ) ;

/ / ===== check f o r i n i t f i l e =====
TEST EXIT ( argc == 2 ) ( ” usage : to rus i n i t f i l e \n ” ) ;

/ / ===== i n i t parameters =====
Parameters : : i n i t ( fa l se , argv [ 1 ] ) ;

/ / ===== create p r o j e c t i o n =====
double r2 = (1 .5 − 1 . 0 / s td : : s q r t ( 2 . 0 ) ) / 2 . 0 ;
double r1 = 1 . 0 / s td : : s q r t ( 2 . 0 ) + r2 ;

new TorusPro jec t (1 , VOLUME PROJECTION, r1 , r2 ) ;

. . .

adapt−>adapt ( ) ;

t o rus . w r i t e F i l e s ( adapt In fo , t r ue ) ;

The problem definition and the creation of the adaptation loop are done in the usual way (here,
replaced by ...) . After the adaptation loop has returned, we write the result.

Before we let the torus rotate, some variables are defined. We set the rotation angle to Π
3 .

double r o t a t i o n = M PI / 3 . 0 ;
i n t dim = to rus . getMesh()−>getDim ( ) ;
i n t dow = Global : : getGeo (WORLD) ;

DegreeOfFreedom dof ;
WorldVector<double> x ;

const FiniteElemSpace ∗ feSpace = to rus . getFeSpace ( ) ;
const BasisFunct ion ∗basFcts = feSpace−>getBas isFcts ( ) ;
i n t numBasFcts = basFcts−>getNumber ( ) ;
DegreeOfFreedom ∗ l o c a l I n d i c e s = new double [ numBasFcts ] ;
DOFAdmin ∗admin = feSpace−>getAdmin ( ) ;

WorldVector<DOFVector<double>∗> parametr icCoords ;
f o r ( i n t i = 0 ; i < dow ; i ++)

parametr icCoords [ i ] = new DOFVector<double >(feSpace , ” parametr ic coords ” ) ;

In the next step, we store the rotated vertex coordinates of the mesh in parametricCoords,a
vector of DOF vectors, where the first vector stores the first component of each vertex coordinate,
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and so on. In the STL map visited, we store which vertices have already been visited, to avoid
multiple rotations of the same point.

s td : : map<DegreeOfFreedom , bool> v i s i t e d ;
TraverseStack stack ;
E l I n f o ∗ e l I n f o = stack . t r a v e r s e F i r s t ( to rus . getMesh ( ) , −1,

Mesh : : CALL LEAF EL |
Mesh : : FILL COORDS ) ;

wh i le ( e l I n f o ) {
basFcts−>ge tLoca l Ind ices ( e l I n f o−>getElement ( ) , admin , l o c a l I n d i c e s ) ;
f o r ( i n t i = 0 ; i < dim + 1; i ++) {

dof = l o c a l I n d i c e s [ i ] ;
x = e l I n f o−>getCoord ( i ) ;
YRotat ion : : r o t a t e ( x , r o t a t i o n ) ;
i f ( ! v i s i t e d [ dof ] ) {

f o r ( i n t j = 0 ; j < dow ; j ++)
( ∗ ( parametr icCoords [ j ] ) ) [ dof ] = x [ j ] ;

v i s i t e d [ dof ] = t rue ;
}

}
e l I n f o = stack . t raverseNext ( e l I n f o ) ;

}

We create an instance of class ParametricFirstOrder which then is handed to the mesh.
Now, in all future mesh traverses the vertex coordinates stored in parametricCoords are returned,
instead of the original coordinates.

Paramet r i cF i rs tOrder parametr ic (& parametr icCoords ) ;
to rus . getMesh()−>setParamet r ic (& parametr ic ) ;

We rotate the right hand side function, reset adaptInfo and start the adaptation loop again.
Now, we compute the solution on the rotated torus, which then is written to the files rotation1.mesh
and rotation1.dat.

f . r o t a t e ( r o t a t i o n ) ;
adapt In fo−>rese t ( ) ;
adapt−>adapt ( ) ;

Da taCo l lec to r ∗dc = new DataCo l lec to r ( feSpace , to rus . ge tSo lu t i on ( ) ) ;
MacroWriter : : wr i teMacro ( dc , ” output / r o t a t i o n 1 . mesh ” ) ;
Va lueWr i ter : : wr i teVa lues ( dc , ” output / r o t a t i o n 1 . dat ” ) ;
de le te dc ;

We perform another rotation. All we have to do is to modify the coordinates in parametricCoords
and to inform f about the rotation.

v i s i t e d . c l ea r ( ) ;
e l I n f o = stack . t r a v e r s e F i r s t ( to rus . getMesh ( ) , −1,

Mesh : : CALL LEAF EL | Mesh : : FILL COORDS ) ;
wh i le ( e l I n f o ) {

basFcts−>ge tLoca l Ind ices ( e l I n f o−>getElement ( ) , admin , l o c a l I n d i c e s ) ;
f o r ( i n t i = 0 ; i < dim + 1; i ++) {

dof = l o c a l I n d i c e s [ i ] ;
x = e l I n f o−>getCoord ( i ) ;
YRotat ion : : r o t a t e ( x , r o t a t i o n ) ;
i f ( ! v i s i t e d [ dof ] ) {
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f o r ( i n t j = 0 ; j < dow ; j ++)
( ∗ ( parametr icCoords [ j ] ) ) [ dof ] = x [ j ] ;

v i s i t e d [ dof ] = t rue ;
}

}
e l I n f o = stack . t raverseNext ( e l I n f o ) ;

}

f . r o t a t e ( r o t a t i o n ) ;
adapt In fo−>rese t ( ) ;
adapt−>adapt ( ) ;

dc = new DataCo l lec to r ( feSpace , to rus . ge tSo lu t i on ( ) ) ;
MacroWriter : : wr i teMacro ( dc , ” output / r o t a t i o n 1 . mesh ” ) ;
Va lueWr i ter : : wr i teVa lues ( dc , ” output / r o t a t i o n 1 . dat ” ) ;
de le te dc ;

The solution is written to rotation2.mesh and rotation2.dat.
Finally, we free some memory and finish the main program.

f o r ( i n t i = 0 ; i < dow ; i ++)
de le te parametr icCoords [ i ] ;

de le te [ ] l o c a l I n d i c e s ;
}

4.7.2 Parameter file

In the parameter file, we set the macro file to ./macro/torus_macro.3d. This two dimensional
mesh is 8 times globally refined and successively projected on the torus.

dimension o f wor ld : 3

torusMesh−>macro f i l e name : . / macro / torus macro .3 d
torusMesh−>g loba l re f inements : 8

torus−>mesh : torusMesh
torus−>dim : 2
torus−>polynomia l degree [ 0 ] : 1

torus−>so l ve r : cg
torus−>so lver−>max i t e r a t i o n : 1000
torus−>so lver−>t o le rance : 1 .e−8
torus−>so lver−> l e f t precon : diag
torus−>es t ima to r : no
torus−>marker : no

torus−>output−>f i lename : output / t o rus
torus−>output−>AMDiS format : 1
torus−>output−>AMDiS mesh ext : . mesh
torus−>output−>AMDiS data ext : . dat
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Figure 4.17: Macro mesh of the torus problem.

4.7.3 Macro file

The macro mesh defined in ./macro/torus_macro.3d is shown in Figure 4.17.

4.7.4 Output

In Figure 4.18, the solutions on the three tori are shown.
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Figure 4.18: Solution on the original torus and on the two rotated tori.
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