AMD:IS tutorial

Simon Vey, Thomas Witkowski

March 14, 2011

Contents

1__Introduction|

2 Installation

[2.1 Installation of the AMDiS library|.
2.2 Compilation of an example application]

[3 Application makefile|

[4 Implementation of example problems|
[4.17Stationary problem with Dirichlet boundary condition]

/ / O D

4.3.4 Output].

4 oupled problems| e

[4471 Sourcecodel

4.4.3 Macrofile]
444 Outpul][. e
.............................
...................................

4.5.2 Parameterfilel. e
453 Macrofilel

4.5.4 OUutpull. o
4.6 Periodic boundary conditions|

4.6.4 Outpul]. e
4. ProJECHIONS| . v v v vt e

CONTENTS

4.7.3 Macrofilel 42
4.7.4 Outpull. e e e 44
4.8 Parame elements| 44
481 Sourcecodel 45
4.8.2 Parameterfilel. 49
4.8.3 Macrofilel e 50

4.8.4 Outpu|. e 50

Chapter 1

Introduction

The objective of this tutorial is to introduce the user into the main AMDIS features by giving some
application examples.

Section [2] describes the installation of the AMDIS library and the building of user applications
step by step. The corresponding application makefile is given in Section

In Section 4] for every example the following aspects are described:

Abstract problem description: In the header of each example section, the abstract prob-
lem definition is given. Sometimes, some solution strategies on a high abstraction level are
mentioned, also.

Source code: In the source code section, the listing of the example source code is ex-
plained.

Parameter file: In this section, the parameter file is described. The parameter file contains
parameters which are read be the application at runtime. The name of the parameter file is
usually passed to the the application as a command line argument.

Macro file: In the macro file section, the definition of the coarse macro mesh is shown,
which is the basis for adaptive refinements.

Output: The AMDIS results are written to output files that contain the final mesh and the
problem solution on this mesh. The output can be visualized by proper tools (CrystalClear,
ParaView, TecPlot). In the output section, the visualized problem results are shown and
discussed.

To avoid unnecessary repetitions, not every aspect of every example is described, but only those
aspects that have not appeared in previous examples.

CHAPTER 1. INTRODUCTION

Chapter 2

Installation

2.1 Installation of the AMDIS library

To install the AMDIS library, the following steps must be performed:

1. Create the AMDIS source directory. This can be done in different ways. Here, we show
three possibilities:

e Unpacking the archive file AMDiS.tgz:
— > tar xvfz AMDiS.tgz
e Checking out an SVN project:

— > svn checkout --username developername
https://gforge.zih.tu-dresden.de/svn/amdis/trunk amdis

2. Change into the AMDIS directory:
> cd amdis/AMDiS

3. Create the makefiles for your system using the configure script:
> ./configure <CONFIGURE-OPTIONS>

The configure script creates the needed makefiles. It can be called with the following
options:

--prefix=<AMDIS-DIR>: Installation path of the AMDIS library. The library file will be stored
in <AMDIS-DIR>/1ib. With —-prefix=*‘pwd‘ AMDIS will be installed in the current work-
ing directory, which mostly is a good choice.

--enable-debug: If this option is used, AMDIS will be compiled with debug support. By
default, AMDIS is compiled in an optimized mode without debug support.

--enable-umfpack: If this option is used, AMDIS is compiled with support for the UMF-
PACK solver library.

4. Make the library:
> make install

If you have added a new source file or you want to change something on the automake-system,
you have to rerun the following command:

./autogen <CONFIGURE-OPTION>
This will generate files for the configure-make-system.

7

8 CHAPTER 2. INSTALLATION

2.2 Compilation of an example application

For the compilation of the examples, described in this section, the following steps must be exe-
cuted:

1. Change into the demo directory:
> cd demo

2. It may be required to change the Makefile:

e Set the AMDIS path and paths of other needed libraries.
e Set user flags.

The makefile is described in Section[3]in detail.
3. Make the application example:
> make <PROG-NAME>
<PROG-NAME> is the name of the application example.

To run the example, call:
> ./<PROG-NAME> <PARAMETER-FILE>

Chapter 3

Application makefile

In this section, the organization of the application makefile is described which is used for the
examples in this tutorial. The same organization can be used for other user applications, too.
In the first block, user flags and directories are specified.

===== flags and directories (to be modified by the user)

USE_PARALLEL_AMDIS = 0O
USE_OPENMP = 0
USE_UMFPACK = 1
USE_MKL = 0
USE_SERVER =
USE_COMPILER = gcc
DEBUG = 0

AMDIS_DIR = ../AMDiS
MPI_DIR =

If USE_PARALLEL_AMDIS is set to 1, parallel applications will be supported. If AMDIS is compiled
with OpenMP supported, USE_OPENMP must be set to 1. If you want to make use of UMFPACK oder
Intel's Math Kernel Library, set USE_UMPFACK and USE_MKL, repsectively, to 1. In both cases, AMDIS
must be compiled with the corresponding options. If you run your computations on one of the high
performance computers installed at the TU Dresden, insert the name of the corresponding system
to USE_SERVER. Using the flag USE_COMPILER you may decide to use either the GNU C++ or the
Intel C++ compiler. Note that your program must be compiled with the same compiler AMDIS has
been compiled with. To the last you can enable the debuge mode in your code setting DEBUG to 1.

AMDIS_DIR stores the AMDIS installation path and must be set by the user. This is the path
given to the AMDIS configure script by the --prefix option. If you have not changed the directory
structure of your AMDIS installation, or you do not want to use some other AMDIS installation for
the demo examples, you do not need to change the standard value. The value of MPI_DIR is only
required for parallel computations. If you run your parallel computations on the high performance
computers of the TU Dresden, do not set a value here.

Then the AMDIS makefile is included from the corresponding AMDiSinstallation:

#==== standard definitions and rules to compile AMDiS user programs ==========
include $(AMDIS_DIR)/other/include/Makefile_AMDiS.mk

Finally, we define rules for the linking of user applications. Here, we present only the rule for
the ellipt application. Other applications can be created in an analog way.

9

10 CHAPTER 3. APPLICATION MAKEFILE

#

===== user programs

—_——
VPATH = .:./src

===== myprog

ELLIPT_OFILES = ellipt.o

ellipt: $(ELLIPT_OFILES)
$(LINK) $(CPPFLAGS) -o ellipt $(ELLIPT_OFILES) $(LIBS)

The VPATH variable contains all pathes, where sources can be located. The ellipt rule
first creates all needed object files defined in ELLIPT_OFILES. In this example, only ellipt.o
is needed. Then all needed object files and libraries are linked together. The -o option specifies
that the executable will be written to the file e11lipt.

Chapter 4

Implementation of example
problems

4.1 Stationary problem with Dirichlet boundary condition

As example for a stationary problem, we choose the Poisson equation

—Au = f inQcR¥m (4.1)
u = g onoN (4.2)
with
flx) = - (4003&2 — 20dow) g~ 102" (4.3)
g(sc) _ 6_10962.

dim is the problem dimension and thus the dimension of the mesh the problem will be discretized
on. dow is the dimension of the world the problem lives in. So world coordinates are always real
valued vectors of size dow. Note that the problem is defined in a dimension independent way.
Furthermore, dow has not to be equal to dim as long as 1 < dim < dow < 3 holds.

Although the implementation described in Section 4.1.1]is dimension independent, we focus
on the case dim = dow = 2 for the rest of this section. The analytical solution on 2 = [0, 1] x [0, 1]
is shown in Figure [4.1]

Figure 4.1: Solution of the Poisson equation on the unit square.

11

12 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

1d \ 2d \ 3d
source code src/ ellipt.cc
parameter file init/ ellipt.dat.1d | ellipt.dat.2d | ellipt.dat.3d
macro file macro/ | macro.stand.ld | macro.stand.2d | macro.stand.3d
output files output/ ellipt.mesh, ellipt.dat

Table 4.1: Files of the el1ipt example.

4.1.1 Source code

For this first example, we give the complete source code. But to avoid loosing the overview,
we sometimes interrupt the code to give some explaining comment. The first three lines of the
application code are:

#include "AMDIS.h”
using namespace AMDIS;
using namespace std;

In the first line, the AMDIS header is included. In line 2 and 3, used namespaces are in-
troduced. std is the C++ standard library namespace, used e.g. for the STL classes. AMDIS
provides its own namespace AMDiS to avoid potential naming conflicts with other libraries.

Now, the functions f and g will be defined by the classes F and G:

class G : public AbstractFunction<double, WorldVector<double> >
{
public:

double operator ()(const WorldVector<double>& x) const

{

return exp(—10.0 % (x % x));

}
b

G is a sub class of the templated class AbstractFunction<R, T> that represents a mapping
from type T to type R. Here, we want to define a mapping from R%™ implemented by the class
WorldVector<double>, to R, represented by the data type double. The actual mapping is defined

by overloading the operator (). x*x stands for the scalar product of vector x with itself.
The class F is defined in a similar way:

class F : public AbstractFunction<double, WorldVector<double> >

{
public:

F(int degree) : AbstractFunction<double, WorldVector<double> >(degree) {}

double operator ()(const WorldVector<double>& x) const
{
int dow = Global ::getGeo (WORLD);
double r2 = (x % x);
double ux = exp(—10.0 % r2);
return —(400.0 x r2 — 20.0 * dow) x ux;
}
b
F gets the world dimension from the class Global by a call of the static function getGeo (WORLD).
The degree handed to the constructor determines the polynomial degree with which the function
should be considered in the numerical integration. A higher degree leads to a quadrature of higher
order in the assembling process.
Now, we start with the main program:

4.1. STATIONARY PROBLEM WITH DIRICHLET BOUNDARY CONDITION 13

/] ===== main program =====
int main(int argc, charx argv[])

{
FUNCNAME (" main ") ;

/| ===== check for init file =====
TEST_EXIT(argc == 2)("usage: ellipt initfile\n”);

/] ===== init parameters =====
Parameters::init (true, argv[1]);

The macro FUNCNAME defines the current function name that is used for command line output,
e.g. in error messages. The macro TEST_EXIT tests for the condition within the first pair of brack-
ets. If the condition does not hold, an error message given in the second bracket pair is prompted
and the program exits. Here the macro is used to check, whether the parameter file was speci-
fied by the user as command line argument. If this is the case, the parameters are initialized by
Parameters::init(true, argv[1]). The first argument specifies, whether the initialized param-
eters should be printed after initialization for debug reasons. The second argument is the name
of the parameter file.

Now, a scalar problem with name ellipt is created and initialized:

// ===== create and init the scalar problem =====
ProblemScal ellipt(”ellipt”);
ellipt.initialize (INIT_ALL);

The name argument of the problem is used to identify parameters in the parameter file that
belong to this problem. In this case, all parameters with prefix ellipt-> are associated to this
problem. The initialization argument INIT_ALL means that all problem modules are created in a
standard way. Those are: The finite element space including the corresponding mesh, needed
system matrices and vectors, an iterative solver, an estimator, a marker, and a file writer for
the computed solution. The initialization of these components can be controlled through the
parameter file (see Section4.1.2).

The next steps are the creation of the adaptation loop and the corresponding AdaptInfo:

// === create adapt info ===
Adaptinfo adaptinfo (" ellipt —adapt”);

// === create adapt ===
AdaptStationary adapt(”ellipt —adapt”, ellipt, adaptinfo);

The AdaptInfo object contains information about the current state of the adaptation loop as
well as user given parameters concerning the adaptation loop, like desired tolerances or maximal
iteration numbers. Using adaptInfo, the adaptation loop can be inspected and controlled at
runtime. Now, a stationary adaptation loop is created, which implements the standard assemble-
solve-estimate-adaptloop. Arguments are the name, again used as parameter prefix, the problem
as implementation of an iteration interface, and the AdaptInfo object. The adaptation loop only
knows when to perform which part of an iteration. The implementation and execution of the single
steps is delegated to an iteration interface, here implemented by the scalar problem ellipt.

Now, we define boundary conditions:

/| ===== add boundary conditions =====
ellipt.addDirichletBC (1, new G);

We have one Dirichlet boundary condition associated with identifier 1. All nodes belonging to
this boundary are set to the value of function G at the corresponding coordinates. In the macro file
(see Section the Dirichlet boundary is marked with identifier 1, too. So the nodes can be
uniquely determined.

14 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

The operators now are defined as follows:

/] ===== create matrix operator =====

Operator matrixOperator(ellipt.getFeSpace ());
matrixOperator.addSecondOrderTerm(new Laplace_SOT);
ellipt.addMatrixOperator(&matrixOperator);

/| ===== create rhs operator =====

int degree = ellipt.getFeSpace()—>getBasisFcts()—>getDegree ();
Operator rhsOperator(ellipt.getFeSpace());
rhsOperator.addZeroOrderTerm (new CoordsAtQP_ZOT (new F(degree)));
ellipt.addVectorOperator(&rhsOperator);

First, we define a matrix operator (left hand side operator) on the finite element space of
the problem. Now, we add the term —Auw to it. Note that the minus sign isn’t explicitly given, but
implicitly contained in Laplace_S0T. With addMatrixOperator we add the operator to the problem.
The definition of the right hand side is done in a similar way. We choose the degree of our function
to be equal to the current basis function degree.

Finally we start the adaptation loop and afterwards write out the results:

// ===== start adaption loop =====
adapt.adapt();

/] ===== write result =====
ellipt.writeFiles (adaptinfo, true);

The second argument of writeFiles forces the file writer to print out the results. In time
dependent problems it can be useful to write the results only every i-th timestep. To allow this
behavior the second argument has to be false.

4.1.2 Parameter file

The name of the parameter file must be given as command line argument. In the 2d case we call:
> ./ellipt init/ellipt.dat.2d

In the following, the content of file init/ellipt.dat.2d is described:

dimension of world: 2
elliptMesh—macro file name: ./macro/macro. stand.2d
elliptMesh—global refinements: 0

The dimension of the world is 2, the macro mesh with name elliptMesh is defined in file
./macro/macro.stand.2d (see Section[4.1.3). The mesh is not globally refined before the adap-
tation loop. A value of n for elliptMesh->global refinements means n bisections of every
macro element. Global refinements before the adaptation loop can be useful to save computation
time by starting adaptive computations with a finer mesh.

ellipt —>mesh: elliptMesh
ellipt —dim: 2
ellipt —polynomial degree: 1

Now, we construct the finite element space for the problem ellipt (see Section |4.1.1). We
use the mesh elliptMesh, set the problem dimension to 2, and choose Lagrange basis functions
of degree 1.

4.1. STATIONARY PROBLEM WITH DIRICHLET BOUNDARY CONDITION 15

ellipt —>solver: cg
ellipt —solver—max iteration: 1000
ellipt —>solver—>tolerance: 1.e-8
ellipt —>solver—left precon: diag
ellipt —>solver—right precon: no

We use the conjugate gradient method as iterative solver. The solving process stops after
maximal 1000 iterations or when a tolerance of 10~® is reached. Furthermore, we apply diagonal
left preconditioning, and no right preconditioning.

ellipt —estimator: residual
ellipt —estimator—>error norm: 1

ellipt —estimator—CO0: 0.1
ellipt —estimator—C1: 0.1

As error estimator we use the residual method. The used error norm is the H1-norm (instead
of the L2-norm: 2). Element residuals (C0) and jump residuals (C1) both are weighted by factor
0.1.

ellipt —>marker—>strategy: 2 % 0: no 1: GR 2: MS 3: ES 4:GERS
ellipt —>marker—MSGamma: 0.5

After error estimation, elements are marked for refinement and coarsening. Here, we use the
maximum strategy with v = 0.5.

ellipt —adapt—tolerance: 1e—4
ellipt —adapt—>max iteration: 10
ellipt —adapt—>refine bisections: 2

The adaptation loop stops, when an error tolerance of 10~ is reached, or after maximal 10
iterations. An element that is marked for refinement, is bisected twice within one iteration. Analog
elements that are marked for coarsening are coarsened twice per iteration.

ellipt —output—filename: output/ellipt
ellipt —output—ParaView format: 1

The result is written in ParaView-format to the file output/ellipt.vtu.

4.1.3 Macro file

In Figure 4.2/ one can see the macro mesh which is described by the file macro/macro.stand. 2d.
First, the dimension of the mesh and of the world are defined:

DIM: 2
DIM.OF_ WORLD: 2

Then the total number of elements and vertices are given:

number of elements: 4
number of vertices: 5

The next block describes the two dimensional coordinates of the five vertices:

oordinates:

<

tex ¢
0 0.0
0 0.0
.0 1.0
0 1.0
5 0.5

16 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

Figure 4.2: Two dimensional macro mesh

The first two numbers are interpreted as the coordinates of vertex 0, and so on.
Corresponding to these vertex indices now the four triangles are given:

nt vertices:

Element 0 consists in the vertices 0, 1 and 4. The numbering is done anticlockwise starting
with the vertices of the longest edge.

It follows the definition of boundary conditions:

lement boundaries:

e
1
1
1
1

The first number line means that element 0 has no boundaries at edge 0 and 1, and a boundary
with identifier 1 at edge 2. The edge with number i is the edge opposite to vertex number i. The
boundary identifier 1 corresponds to the identifier 1 we defined within the source code for the
Dirichlet boundary. Since all elements of the macro mesh have a Dirichlet boundary at edge 2,
the line 0 0 1 is repeated three times.

The next block defines element neighborships. -1 means there is no neighbor at the corre-
sponding edge. A non-negative number determines the index of the neighbor element.

element neighbours:

13 —1
20 —1
31 -1
02 1

This block is optional. If it isn’t given in the macro file, element neighborships are computed
automatically.

4.2. TIME DEPENDENT PROBLEM 17

elliptMesh (t=0) (solution) / Volume

B
(a) (b)

Figure 4.3: (a): Solution after 9 iterations, (b): corresponding mesh

4.1.4 Output

Now, the program is started by the call ./ellipt init/ellipt.dat.2d. After 9 iterations the
tolerance is reached and the files output/ellipt.mesh and output/ellipt.dat are written. In
Figure [4.3(a) the solution is shown and in[4.3|b) the corresponding mesh. The visualizations was
done by the VTK based tool CrystalClear.

4.2 Time dependent problem

This is an example for a time dependent scalar problem. The problem is described by the heat
equation

du—Au = [inQCRY" x (theo o) (4.5)
u = g onoQx (theain end) (4.6)
u = wuy on€Qx (). (4.7)

We solve the problem in the time interval (t*¢9", t"®) with Dirichlet boundary conditions on
dQ. The problem is constructed, such that the exact solution is u(z, t) = sin(rt)e~1°*". So we set

flz,t) = 7rCOS(71't)e_10’”2 — (4002* — 20dow) Sin(ﬂ'?f)e_lo”2 (4.8)
g(z,t) = sin(rt)e 107" (4.9)
up(z) = sin(mtheoin)e=10e", (4.10)

We use a variable time discretization scheme. Equation (4.5) is approximated by

new __ ,,o0ld

u u

- — (0AU" + (1 —) Au®'d) = f(-, % + 07). (4.11)
T = t"v — ¢°ld js the timestep size between the old and the new problem time. u™*" is the
(searched) solution at t = t"°*. u°? is the solution at t = ¢°/¢, which is already known from the
last timestep. The parameter 0 determines the implicit and explicit treatment of Au. For 8 = 0 we
have the forward explicit Euler scheme, for 6 = 1 the backward implicit Euler scheme. 6 = 0.5
results in the Crank-Nicholson scheme. If we bring all terms that depend on u°? to the right hand
side, the equation reads

new old

Y Ay = + (1= 0)Autd 4 f(-,t°1 4+ 07). (4.12)

T

18 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

1d \ 2d \ 3d
source code src/ heat.cc
parameter file init/ heat.dat.1d heat.dat.2d heat.dat.3d
macro file macro/ | macro.stand.1d | macro.stand.2d | macro.stand.3d
output files output/ heat_<t>.mesh, heat_<t>.dat

Table 4.2: Files of the heat example. In the output file names, <t> is replaced by the time.

ProblemTime-

ProblemStatBase
Interface

4L

problemStat

ProblemInstatScal ‘
ZaN

Figure 4.4: UML diagram for class Heat.

4.2.1 Source code

Now, we describe the crucial parts of the source code. First, the functions f and g are defined.
In contrast to the ellipt example, the functions now are time dependent. This is implemented by
deriving the function classes also from class TimedObject. This class provides a pointer to the
current time, as well as corresponding setting and getting methods. The usage of a pointer to a
real value allows to manage the current time in one location. All objects that deal with the same
time, point to the same value. In our example, f is evaluated at t = ¢°'¢ + #r, while g (the Dirichlet
boundary function for u™¢") is evaluated at ¢ = t"*. Function g is implemented as follows:

class G : public AbstractFunction<double, WorldVector<double> >,
public TimedObject
{

public:
double operator ()(const WorldVector<double>& x) const

{

}
}s

The variable timePtr is a base class member of TimedObject. This pointer has to be set once
before g is evaluated the first time. Implementation of function f is done in the same way.

Now, we begin with the implementation of class Heat, that represents the instationary problem.
In Figure its class diagram is shown. Heat is derived from class ProblemInstatScal which
leads to following properties:

return sin(M_Pl % (xtimePtr)) * exp(—10.0 *(Xx % X));

Heat implements the ProblemTimeInterface, SO the adaptation loop can set the current time
and schedule timesteps.

Heat implements ProblemStatBase in the role as initial (stationary) problem. The adaptation
loop can compute the initial solution through this interface. The single iteration steps can be
overloaded by sub classes of ProblemInstatScal. Actually, the initial solution is computed

4.2. TIME DEPENDENT PROBLEM 19

through the method solveInitialProblem Of ProblemTimeInterface. But this method is
implemented by ProblemInstatScal interpreting itself as initial stationary problem.

Heat knows another implementation of ProblemStatBase: This other implementation represents
a stationary problem which is solved within each timestep.

The first lines of class Heat are:

class Heat : public ProblemlinstatScal
{
public:
Heat(ProblemScal &heatSpace)
ProblemlinstatScal ("heat”, heatSpace)
{

theta = —1.0;

GET PARAMETER(0, name + "—>theta”, "%f”, &theta);
TEST_EXIT(theta >= 0)(”theta not set!\n”);

thetal = theta — 1.0;

}

The argument heatSpace is a pointer to the stationary problem which is solved each timestep.
It is directly handed to the base class constructor of ProblemInstatScal. In the body of the
constructor, 6 is read from the parameter file and stored in a member variable. The member
variable thetal stores the value of § — 1. A pointer to this value is used later as factor in the
f-scheme.

The next lines show the implementation of the time interface.

void setTime (Adaptinfo xadaptinfo)

Problemlinstat :: setTime (adaptinfo);
rhsTime = adaptinfo—>getTime () — (1 — theta) *x adaptinfo—>getTimestep ();

}

void closeTimestep (Adaptinfo xadaptinfo)

ProblemlinstatScal :: closeTimestep (adaptinfo);
WAIT ;

}

The method setTime is called by the adaptation loop to inform the problem about the current
time. When this function is reimplemented, one should always call the function in the parent
class, such that all time relavant variables in ProblemInstat will be updated. The right hand side
function f will be evaluated at t°'? 4- 67 = t"** — (1 —6)r, the Dirichlet boundary function g at t">,
which is the current time.

The method closeTimestep is called at the end of each timestep by the adaptation loop. In the
default implementation of ProblemInstatScal: :closeTimestep, the solution is written to output
files, if specified in the parameter file. Note that the base class implementation of a method must
be explicitly called, if the method is overwritten in a sub class. The macro WAIT waits until the
return key is pressed by the user, if the corresponding entry in the parameter file is setto 1. The
macro WAIT_REALLY would wait, independent of parameter settings. If closeTimestep wouldn’t
be overloaded here, the default implementation without the WAIT statement would be called after
each timestep.

Now, the implementation of the ProblemStatBase interface begins. As mentioned above, the
instationary problem plays the role of the initial problem by implementing this interface.

void solve (Adaptinfo xadaptinfo)

{

20 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

problemStat—getSolution()—>interpol (exactSolution);

}

void estimate (Adaptinfo xadaptinfo)

double errMax, errSum;

errSum = Error<double >::L2Err(xexactSolution
x(problemStat—getSolution()),
0, &errMax, false);

adaptinfo—>setEstSum (errSum, 0);

adaptinfo—>setEstMax (errMax, 0);

}

Here, only the solve and the estimate step are overloaded. For the other steps, there are
empty default implementations in ProblemInstatScal. Since the mesh is not adapted in the
initial problem, the initial adaptation loop will stop after one iteration. In the solve step, the exact
solution is interpolated on the macro mesh and stored in the solution vector of the stationary
problem. In the estimate step, the L2 error is computed. The maximal element error and the sum
over all element errors are stored in adaptInfo. To make the exact solution known to the problem,
we need a setting function:

void setExactSolution(AbstractFunction<double, WorldVector<double> > xfct)

{

exactSolution = fct;
}

Now, we define some getting functions and the private member variables:

double xgetThetaPtr() { return θ };
double xgetThetaiPtr() { return &thetal; };
double xgetRHSTimePtr() { return &rhsTime; };

private:

double theta;

double thetail;

double rhsTime;

AbstractFunction<double, WorldVector<double> > xexactSolution;

};

The definition of class Heat is now finished. In the following, the main program is described.
int main(int argc, charxx argv)

{
/| ===== check for init file =====
TEST_EXIT(argc == 2)(”usage: heat initfile\n”);
/] ===== init parameters =====

Parameters::init (false, argv[1]);
Parameters ::readArgv(argc, argv);

/| ===== create and init stationary problem =====
ProblemScal heatSpace (”heat—space”);
heatSpace. initialize (INIT_ALL);

// ===== create instationary problem =====
Heat heat(heatSpace);
heat.initialize (INIT_ALL);

4.2. TIME DEPENDENT PROBLEM 21

So far, the stationary space problem heatSpace and the instationary problem heat were cre-
ated and initialized. heatSpace is an instance of ProblemScal. heat is an instance of the class
Heat we defined above. heatSpace is given to heat as its stationary problem.

The next step is the creation of the needed AdaptInfo objects and of the instationary adapta-
tion loop:

/] create adapt info for heat
Adaptinfo adaptinfo (”heat—adapt”);

// create initial adapt info
Adaptinfo adaptinfolnitial ("heat—initial —adapt”);

/] create instationary adapt
Adaptinstationary adaptinstat (”heat—adapt”,
heatSpace,

adaptinfo
heat,
adaptinfolnitial);

The object heatSpace is handed as ProblemIterationInterface (implemented by class
ProblemScal) to the adaptation loop. heat is interpreted as ProblemTimeInterface (implemented
by class ProblemInstatScal).

The functions f and g are declared in the following way:

!/l ===== create boundary functions =====
G xboundaryFct = new G;
boundaryFct—>setTimePtr (heat.getTime ());
heat.setExactSolution (boundaryFct);
heatSpace.addDirichletBC (1, boundaryFct);

// ===== create rhs functions =====

int degree = heatSpace.getFeSpace()—>getBasisFcts()—>getDegree ();
F xrhsFct = new F(degree);
rhsFct—>setTimePtr(heat.getRhsTimePtr ());

The functions interpreted as TimedObjects are linked with the corresponding time pointers by
setTimePtr. The boundary function is handed to heat as exact solution and as Dirichlet boundary
function with identifier 1 to heatSpace.

Now, we define the operators:

/] ===== create operators =====
double one = 1.0;
double zero = 0.0;

/! create laplace

Operator A(heatSpace.getFeSpace());

A.addSecondOrderTerm (new Laplace_SOT);

A.setUhOld (heat.getOldSolution ());

if («x(heat.getThetaPtr()) != 0.0)
heatSpace.addMatrixOperator (A, heat.getThetaPtr(), &one);

if (x(heat.getThetalPtr()) !'= 0.0)
heatSpace.addVectorOperator (A, heat.getThetalPtr(), &zero);

Operator A represents —Auw. It is used as matrix operator on the left hand side with factor ¢
and as vector operator on the right hand side with factor —(1—6) = 6 — 1. These assemble factors
are the second arguments of addMatrixOperator and addVectorOperator. The third argument

22 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

is the factor used for estimation. In this example, the estimator will consider the operator only on
the left hand side with factor 1. On the right hand side the operator is applied to the solution of the
last timestep. So the old solution is handed to the operator by setUh014d.

/] create zero order operator

Operator C(heatSpace.getFeSpace ());

C.addZeroOrderTerm(new Simple_ZOT);

C.setUhOld (heat.getOldSolution ());

heatSpace.addMatrixOperator (C, heat.getlnvTau(), heat.getlnvTau());
heatSpace.addVectorOperator (C, heat.getlnvTau(), heat.getlnvTau());

The Simple_ZOT of operator C represents the zero order terms for the time discretization. On
both sides of the equation « are added with the factor 1 for both, assembling and error estimation.
The inverse of the current timestep is returned by the function getInvTau(), which is a member
of the class ProblemInstat.

Finally, the operator for the right hand side function f is added and the adaptation loop is
started:

/! create RHS operator

Operator F(heatSpace.getFeSpace());
F.addZeroOrderTerm (new CoordsAtQP_ZOT (rhsFct));
heatSpace.addVectorOperator (F);

/] ===== start adaption loop =====
int errorCode = adaptlnstat.adapt();

CoordsAtQP_ZQOT is a zero order term that evaluates a given function fct at all needed quadra-
ture points. At the left hand side, it would represent the term fct(z,t) - u, on the right hand side,
just fct(z,t). Note that the old solution isn’t given to the operator here. Otherwise the term would
represent fct(z,t) - u°'? on the right hand side.

4.2.2 Parameter file

In this section, we show only the relevant parts of the parameter file heat .dat.2d.
First the parameter 6 for the time discretization is defined:

heat—theta: 1.0
Then we define the initial timestep and the time interval:

heat—adapt—timestep: 0.1
heat—adapt—>start time: 0.0
heat—adapt—>end time: 1.0

Now, tolerances for the space and the time error are determined:
heat—adapt—tolerance: 0.05
heat—adapt—time tolerance: 0.05
heat—adapt—>strategy: 1

If strategy is 0, an explicit time strategy with fixed timestep size is used. A value of 1 stands
for the implicit strategy.

The following lines determine, whether coarsening is allowed in regions with sufficient small
errors, and how many refinements or coarsenings are performed for marked elements.

heat—adapt—>coarsen allowed: 1
heat—adapt—>refine bisections: 2
heat—adapt—>coarsen bisections: 2

4.3. SYSTEMS OF PDES 23

kR

heatMesh (1=0.199996) (solution) / solution heatMesh (1=0.470701) (solution) / solution heatMesh (=0.812106) (solution) / solution

o om 05 o 1 o om o5 o oz 05 o 1

05

t~0.2 t~ 047 t ~ 0.81

Figure 4.5: The solution at three different timesteps.

Now, the output behavior is determined:

heat—>space—output—filename: output/heat
heat—space—output—ParaView format:
heat—space—output—ParaView animation:
heat—>space—>output—>write every i—th timestep:
heat—space—output—append index:
heat—space—output—index length:
heat—>space—output—index decimals:

WO = = 4

In this example, all output filenames start with prefix output/heat and end with the extension
.vtu. Output is written after every 10th timestep. The time of the single solution is added after
the filename prefix with 6 letters, three of them are decimals. The solution for ¢ = 0 e.g. would
be written to the file output/heat00.000.vtu. If the parameter ParaView animation is enabled,
AMDIS writes for the whole simulation one ParaView pvd file (in this case output/heat.pvd)
including the names of all vtu files that were created. This file makes it very easy to view and
analyze all the results of an instationary problem in ParaView.

Finally, we set parameter WAIT to 0. If the variable is set to 1, each call of the macro WAIT in
the application will lead to an interruption of the program, until the return key is pressed.

WAIT : 0

4.2.3 Macro file

We again use the macro file macro/macro.stand.2d, which was described in Section(4.1.3

4.2.4 Output

As mentioned above, the output files look like output/heat00.000.vtu. Depending on the corre-
sponding value in the parameter file only the solution after every i-th timestep is written. In Figure
[4.5] the solution at three timesteps is visualized.

4.3 Systems of PDEs

In this example, we show how to implement a system of coupled PDEs. We define

—Au = f (4.13)
u—v = 0. (4.14)

24 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

1d \ 2d \ 3d
source code src/ vecellipt.cc
parameter file init/ | vecellipt.dat.1d | vecellipt.dat.2d | vecellipt.dat.3d
macro file macro/ macro.stand.1d macro.stand.2d macro.stand.3d
output files output/ vecellipt_comp<c>.mesh, vecellipt_comp<c>.dat

Table 4.3: Files of the vecellipt example. In the output file names, <c> is replaced by the
component humber.

For the first equation, we use the boundary condition and definition of function f from Section|4.1
The second equation defines a second solution component v, which is coupled to u, such that
v = u. For the second equation, no boundary conditions have to be defined. The system can be
written in matrix-vector form as

(5)()=(5), a1

where I stands for the identity and 0 for a zero operator (or for the absence of any operator). This
is a very simple example without practical relevance. But it is appropriate to demonstrate the main
principles of implementing vector valued problems.

4.3.1 Source code

Instead of a scalar problem, we now create and initialize the vector valued problem vecellipt:

ProblemVec vecellipt ("vecellipt”);
vecellipt.initialize (INIT_ALL);

The AdaptInfo constructor is called with the number of problem components, which is defined
in the parameter file.

// === create adapt info ===
Adaptinfo adaptinfo(”vecellipt —adapt”, vecellipt.getNumComponents());

// === create adapt ===
AdaptStationary adapt(”vecellipt—adapt”, vecellipt, adaptinfo);

The adaptation loop doesn'’t care about the component number. It treats vecellipt only as
implementation of the iteration interface.
The Dirichlet boundary condition for the first equation is defined by

/| ===== add boundary conditions =====
vecellipt.addDirichletBC(1, 0, 0, new G);

The first argument is the condition identifier, as in the scalar case. The second and third
argument define the the component, the boundary condition belongs to.
The operator definitions for the first equation are:

/] ===== create operators =====

Operator matrixOperator00(vecellipt.getFeSpace(0), vecellipt.getFeSpace(0));
matrixOperator00.addSecondOrderTerm (new Laplace_SOT);
vecellipt.addMatrixOperator(&matrixOperator00, 0, 0);

int degree = vecellipt.getFeSpace(0)—>getBasisFcts()—>getDegree ();
Operator rhsOperatorO(vecellipt.getFeSpace(0));
rhsOperator0.addZeroOrderTerm (new CoordsAtQP_ZOT (new F(degree)));
vecellipt.addVectorOperator(&rhsOperator0, 0);

4.3. SYSTEMS OF PDES 25

Operator matrixOperator00 represents the —A operator. Each operator belongs to two finite
element spaces, the row space and the column space. If an operator has the position (7, ;) in
the operator matrix, the row space is the finite element space of component ¢ and the column
space is the finite element space of component j. The finite element spaces can differ in the
used basis function degree. The underlying meshes must be the same. After matrixOperator00
is created, it is handed to the problems operator matrix at position (0,0). The right hand side
operator rhsOperator0 only needs a row space, which is the finite element space of component
0 (u). It is handed to the operator vector at position 0.

Now, the operators for the second equation are defined:

Operator matrixOperator10(vecellipt.getFeSpace(1), vecellipt.getFeSpace(0));
matrixOperator10.addZeroOrderTerm(new Simple_ZOT);
vecellipt.addMatrixOperator (matrixOperator10, 1, 0);

Operator matrixOperator11(vecellipt.getFeSpace(1), vecellipt.getFeSpace(1));
matrixOperator11.addZeroOrderTerm(new Simple_ ZOT(—1.0));
vecellipt.addMatrixOperator (matrixOperator11, 1, 1);

Note that the operator matrixOperator10 can have different finite element spaces, if the
spaces of the two components differ. The operators I and —I are implemented by Simple_Z0T,
once with a fixed factor of 1 and once with a factor of —1.

4.3.2 Parameter file

First, the number of components and the basis function degrees are given. We use Lagrange
polynomials of degree 1 for both components.

vecellipt —components: 2
vecellipt —polynomial degree[0]: 1
vecellipt —polynomial degree[1]: 1

For most small and mid-size linear systems, direct solver perform much better than iterative
ones. Therefore, we make use of the direct solver UMFPACK in this example.

vecellipt —solver: umfpack

All other solver parameters are than ommited because they need to be defined only for iterative
solvers.

Each equation can have its own estimator. In this case, adaptivity should be managed only by
the first component. So the second equation has no estimator.

vecellipt —estimator[0]: residual
vecellipt —estimator[1]: 0

Also the marking strategy can differ between the components. Refinement is done, if at least
one component has marked an element for refinement. Coarsening only is done, if all components
have marked the element for coarsening. In our example, only component 0 will mark elements.

vecellipt —>marker[0]—>strategy: 2
vecellipt —>marker[1]—>strategy: 0

We have only one adaptation loop, which does maximal 10 iterations. The tolerance can
be determined for each component. The total tolerance criterion is fulfilled, if all criteria of all
components are fulfilled.

vecellipt —adapt—>max iteration: 10

vecellipt —adapt[0]—>tolerance: 1e-2
vecellipt —adapt[1]—>tolerance: 1e-3

26 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

vecelliptMesh (1=0) (vecellipt(0)) / solution vecelliptMesh (1=0) (vecelipt(1)) / solution

0 02 05 07 1 o 02 05 07 1

component 0 component 1

Figure 4.6: The two solution components for v and v.

All components can be written into one file:

vecellipt —output—filename: output/vecellipt
vecellipt —>output—ParaView format: 1

As long as all FE spaces are equal, i.e., all components are discretized on the same mesh with
the same basis functions, all components can and should be written to one file.

4.3.3 Macro file

We again use the macro file macro/macro.stand.2d, which was described in Section(4.1.3

4.3.4 Output

Component 0 of the solution (approximation of w) is written to the files output/vecellipt0.mesh
and output/vecellipt0.dat. Component 1 of the solution (approximation of v) is written to the
files output/vecelliptl.mesh and output/vecelliptl.dat. The two components are visualized

in Figure [4.6

4.4 Coupled problems

In this example, we solve the same problem as in Section[4.3] but here we treat the two equations
as two coupled problems. The main difference is that the equations now aren’t assembled into
the same large system of equations, but into two separated systems of equations, that have to be
solved separately. We define the two problems

—Au = f inQcR¥m (4.16)
u = g onodf (4.17)

and
v =u. (4.18)

We first solve the first problem and then use its solution to solve the second problem. This
happens in every iteration of the adaptation loop. Both problems should use the same mesh.

4.4. COUPLED PROBLEMS 27

® ®

coupled iteration

Y

problem1 [assemble H solve] [estimate H adapt]

problem2 [assemble H solve]

Figure 4.7: State diagram of the coupled iteration.

1d \ 2d \ 3d
source code src/ couple.cc
parameter file init/ couple.dat.1d | couple.dat.2d | couple.dat.3d
macro file macro/ | macro.stand.ld | macro.stand.2d | macro.stand.3d
output files output/ couple.mesh, couple.dat

Table 4.4: Files of the couple example.

Mesh adaptation is done by the first problem. So one iteration now looks like illustrated in Figure
47

4.4.1 Source code

In the previous examples, the iteration was implemented always by the corresponding problem
class. In this example, we want to couple two problems within one iteration, so the default imple-
mentation can’t be used. For that reason, we define our own coupled iteration class
MyCoupledIteration which implements the ProblemIterationInterface:

class MyCoupledlteration : public Problemlterationinterface
{
public:
MyCoupledlteration (ProblemStatBase xprobt,
ProblemStatBase xprob2)
problem1 (prob1),
problem2 (prob2)

{}

In the constructor pointers to the two problems are assigned to the private members problemi
and problem2. Note that the pointers point to the interface ProblemStatBase and not to
ProblemScal. This leads to a more general implementation. If e.g. two vector valued problems
should be coupled in the future, we could use our iteration class without modifications.

Now, we implement the needed interface methods:

void beginlteration (Adaptinfo xadaptinfo)
FUNCNAME (” StandardProblemlteration :: beginlteration ()”);

MSG("\n");
MSG(” begin of iteration %d\n”, adaptinfo—getSpacelteration()+1);

28 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

void endlteration (Adaptinfo xadaptinfo) {
FUNCNAME (” StandardProblemlteration :: endlteration ()”);

m(l!\n!l);
MSG(”end of iteration %d\n”, adaptinfo—>getSpacelteration()+1);
M%(”:============================\n ”) ;

}

These two functions are called at the beginning and at the end of each iteration. Here, we only
prompt some output.
The method oneIteration is the crucial part of our implementation:

Flag onelteration (Adaptinfo xadaptinfo, Flag toDo = FULL_ITERATION)
{
Flag flag, markFlag;
if (toDo.isSet(MARK)) markFlag = problem1—markElements(adaptinfo);
if (toDo.isSet(ADAPT) && markFlag.isSet(MESH.REFINED))
flag = problem1—refineMesh (adaptinfo);

if (toDo.isSet(BUILD)) problem1—buildAfterCoarsen(adaptinfo, markFlag);
if (toDo.isSet(SOLVE)) problem1—solve(adaptinfo);

if (toDo.isSet(BUILD)) problem2—buildAfterCoarsen (adaptinfo, markFlag);
if (toDo.isSet(SOLVE)) problem2—>solve(adaptinfo);

if (toDo.isSet(ESTIMATE)) problemi1—>estimate (adaptinfo);
return flag;

}

The toDo flag is used by the adaptation loop to determine which parts of the iteration should be
performed. The first iteration is always an iteration without mesh adaptation (see Figure [4.8). So
we start our iteration by marking and adapting the mesh. The mesh and its adaptation is managed
by the first problem. So we call markElements and refineMesh of problem1. Note that no mesh
coarsenings have to be performed in our example. Afterwards, probleml assembles its system
of equations by buildAfterCoarsen. Assemblage and mesh adaptation are nested operations in
AMDIS (buildBeforeRefine, refineMesh, buildBeforeCoarsen,
coarsenMesh,buildAfterCoarsen). Here, we implement a simplified version.

After probleml has solved its system of equations, problem2 can assemble and solve its
equations system using the solution of the first problem as right hand side. In the method
onelteration, only the order of method calls is determined. The dependency to the solution
of the first problem is created later when the operator for the right hand side of problem2 is cre-
ated.

After also the second problem computed its solution, probleml does the error estimation (re-
member: mesh adaptation is managed by problemi).

Now, the access to the coupled problems is implemented and the member variables are de-
fined:

int getNumProblems ()

{

return 2;

}

ProblemStatBase xgetProblem(int number = 0)

4.4. COUPLED PROBLEMS

29

stationary adaptation loop

, pA

one iteration | il “tolerance . S ——
without adaptation reached?.
yes

Y

e

Figure 4.8: Stationary adaptation loop.

FUNCNAME (” Coupledlteration :: getProblem ()”);
if (number == 0) return problem1;
if (number == 1) return problem2;

ERROR_EXIT(”invalid problem number\n”);
return NULL;

}

private:
ProblemStatBase xproblem1;
ProblemStatBase xproblem2;

}s

The class MyCoupledIteration is finished now.

The next class, Identity, implements the identity I(z) = « for double variables. An arbitrary

degree can be given to it. The class is used later to determine the quadrature degree used for the
right hand side of problem2.

class Identity : public AbstractFunction<double, double>
{
public:

Identity (int degree) : AbstractFunction<double, double>(degree) {}

double operator ()(const double& x) const
{

return x;

}
b

Now, we start with the main program:

int main(int argc, charx argv[])

{
FUNCNAME (" main ") ;
TEST_EXIT (argc == 2)(”usage: couple initfile\n”);
Parameters::init (true, argv[1]);

/! ===== create and init the first problem =====
ProblemScal problem1 (”problem1”);

30 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS
problem1.initialize (INIT_ALL);

/! ===== add boundary conditions for problem1 =====
problem1.addDirichletBC (1, new G);

So far, we created and initialized problem1 and its boundary conditions.
Now, we create problem2. It should have its own finite element space, system, solver and file
writer, but the mesh should be adopted from problemi.

// ===== create and init the second problem =====
Flag initFlag =

INIT_FE_SPACE |

INIT_.SYSTEM |

INIT_SOLVER |

INIT_FILEWRITER;

Flag adoptFlag =
CREATE.MESH |
INIT-MESH;

ProblemScal problem2 (”problem2”);

problem2.initialize (initFlag,
&problem1 |
adoptFlag);

The operators for the first problem are defined like in Section Here, we only show the
operators of problem2.

/l ===== create operators for problem2 =====
Operator matrixOperator2 (problem2.getFeSpace ());
matrixOperator2.addZeroOrderTerm (new Simple_ZOT);
problem2.addMatrixOperator(&matrixOperator2);

Operator rhsOperator2 (problem2.getFeSpace ());

rhsOperator2.addZeroOrderTerm (new VecAtQP_ZOT (problem1.getSolution (),
new ldentity (degree)));

problem2.addVectorOperator(&rhsOperator2);

At the left hand side, we have just an ordinary Simple_ZO0T. At the right hand side, we have
a zero order term of the form f(u) with f = I the identity. is given by the solution DOF vector
of probleml. I maps the values of the DOF vector evaluated at quadrature points to itself. The
function degree is used to determine the needed quadrature degree in the assembler.

Now, the adaptation loop is created:

// ===== create adaptation loop and iteration interface =====
Adaptinfo xadaptinfo = new Adaptinfo (”couple—adapt”, 1);

MyCoupledlteration coupledlteration(&problem1, &problem2);

AdaptStationary xadapt = new AdaptStationary (”couple—adapt”,
&coupledlteration,
adaptinfo);

Note that not a pointer to one of the problems is passed to the adaptation loop, but a pointer
to the coupledIteration object, which in turn knows both problems.

The adaptation loop is now started. After it is finished, the solutions of both problems are
written.

4.4. COUPLED PROBLEMS 31

// ===== start adaptation loop
adapt—adapt ();

/] ===== write solution =====
problem1.writeFiles (adaptinfo, true);
problem2. writeFiles (adaptinfo, true);

4.4.2 Parameter file

We have one adaptation loop called couple->adapt:

couple—adapt—>tolerance: 1e-8
couple—adapt—>max iteration: 10
couple—adapt—>refine bisections: 2

The coupled problem consits of two sub problems. The first problem creates the mesh, solves
its linear system of equations, estimates the error, adapts the mesh, and finally writes its output:

./ macro/macro. stand.2d
refinements: 0

coupleMesh—>macro file name:
coupleMesh—>global

problem1—>mesh: coupleMesh

problem1—>dim: 2

problem1—>polynomial degree: 1

problemi—>solver: cg % no, bicgstab, cg, gmres, odir, ores
problem1—>solver—>max iteration: 1000

problem1—>solver—>tolerance: 1.e-8

problem1—>solver—left precon: diag

problemi1—estimator: residual

problem1—estimator—CO0:
problem1—>estimator—C1:

problem1—>marker—>strategy:
problem1—marker—MSGamma:

problem1—>output—>filename:
problem1—>output—AMDIS format:

problem1—>output—AMDIS mesh ext:
problem1—output—AMDIS data ext:

0.1 % constant of element residual
0.1 % constant of jump residual

2 % 0: no
0.5

1: GR 2: MS 3: ES 4:GERS

output/problem1
1

.mesh

.dat

The second problem uses the mesh of problemi. So it creates no mesh, no estimator, and no
marker. But a solver is needed to solve problem2s linear system of equations, and a file writer to

write the solution:

problem2—>dim:
problem2—polynomial degree:

problem2—>solver:
problem2—>solver—>max iteration:
problem2—>solver—>tolerance:
problem2—>solver—left precon:

cg % no,
1000
1.e-8
diag

bicgstab, cg, gmres, odir, ores

32 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

1d \ 2d \ 3d
source code src/ neumann.cc
parameter file init/ neumann.dat.1d neumann.dat.2d neumann.dat.3d
macro file macro/ | neumann.macro.ld | neumann.macro.2d | neumann.macro.3d
output files output/ neumann.mesh, neumann.dat

Table 4.5: Files of the neumann example.

problem2—estimator: no
problem2—>marker—>strategy: 0
problem2—output—filename: output/problem2

problem2—output—AMDIS format: 1
problem2—>output—AMDIS mesh ext: .mesh
problem2—output—AMDIS data ext: .dat

4.4.3 Macro file

We again use the macro file macro/macro.stand.2d, which was described in Section(4.1.3

4.4.4 Output

The solution of the first problem is written to the files output/probleml.mesh and
output/probleml.dat. The solution of the second problem is written to the files
output/problem2.mesh and output/problem2.dat. We don’t visualize the results here, because
they conform with the results showed in Section |4.3.4

4.5 Neumann boundary conditions

In this example, we solve the problem defined in Section But now, we set the domain Q
to [—0.5;0.5]?, so the source f is located in the middle of Q2. Furthermore, we use Neumann
boundary conditions on the left and on the right side of 2. We set AVu - v = 1 at the Neumann
boundary. So, the derivative in direction of the surface normal is set to 1 at these points. The rest
of the boundary keeps unchanged (Dirichlet boundary, set to the true solution).

4.5.1 Source code

Only a few changes in the source code are necessary to apply Neumann boundary conditions.
First, we define the function N = 1.

class N : public AbstractFunction<double, WorldVector<double> >

{
public:
double operator ()(const WorldVector<double>& x) const

{

return 1.0;

}
b

In the main program we add the boundary conditions to our problem neumann.

4.5. NEUMANN BOUNDARY CONDITIONS 33

int main(int argc, charx argv[])

{

neumann .addNeumannBC (1, new N);
neumann. addDirichletBC (2, new G);

Since the Dirichlet condition has a higher ID, it has a higher priority against the Neumann
boundary condition. This is important, where different conditions meet each other in some points.
In this example, these are the corner points of Q. If Dirichlet boundary conditions are used to-
gether with boundary conditions of other type, the Dirichlet conditions should always have the
higher priority.

4.5.2 Parameter file

In the parameter file, we use the file ./macro/neumann.macro.2d as macro mesh file, described
in the next section.

4.5.3 Macro file

The file neumann.macro.2d is listed below:

DIM: 2
DIM.OF_ WORLD: 2

number of vertices: 5
number of elements: 4

vertex coordinates:
-0.5 -0.5

nt boundaries:

In contrast to the standard file macro.stand.2d, here the vertex coordinates are shifted to
describe the domain [—0.5; 0.5]2. Furthermore, the boundary block changed. The elements 0 and
2 have the Dirichlet boundary with ID 2 at edge 2. Elements 1 and 3 have the Neumann boundary
condition with ID 1 applied to their local edge 2.

34 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

Figure 4.9: Solution of the problem with Neumann boundary conditions at two sides.

o dp 2 6=

Figure 4.10: Two dimensional domain with periodic boundary conditions in both dimensions (left)
and in only one dimension (right). In the first case, the solution at 2 can be propagated to the
whole plane of R2. In the second case, the solution only describes a band within R?

4.5.4 Output

In Figure [4.9] the solution is shown. At the Neumann boundaries, one can see the positive slope.
At Dirichlet boundaries, the solution is set to g(x).

4.6 Periodic boundary conditions

Periodic boundary conditions allow to simulate an effectively infinite tiled domain, where the finite
domain €2 is interpreted as one tile of the infinte problem domain. The solution outside of €2 can
be constructed by periodically continue the solution within Q. In Figure [4.70] two examples for
periodic boundary conditions on a two dimensional domain are illustrated. On the left hand side
example, the upper and the lower part of the boundary as well as the left and the right part of the
boundary are assigned to each other as periodic boundary. This results in a solution, which tiles
the infinte plane. On the right hand side example, only the left and the right part of the domain
boundary are assigned to each other, which results in a infinte band.
In AMDIS, there are two ways to implement periodic boundary conditions:

4.6. PERIODIC BOUNDARY CONDITIONS 35

00 1010 2.0g2.0 3.0
® ® ® o

Figure 4.11: A one dimensional mesh with vertex coordinates stored at the elements and a cor-
responding periodic mesh with changed mesh topology. Note that the geometric data are not
changed. The coordinates of the first vertex depend on the element it belongs to.

1d \ 2d \ 3d
source code src/ periodic.cc
parameter file init/ periodic.dat.1d periodic.dat.2d periodic.dat.3d
periodic file init/ periodic.per.1d periodic.per.2d periodic.per..3d
macro file macro/ | periodic.macro.1ld | periodic.macro.2d | periodic.macro.3d
output files output/ periodic.mesh, periodic.dat

Table 4.6: Files of the periodic example.

1. Changing the mesh topology (mode 0): Before the computation is started, the topology of
the macro mesh is changed. Two vertices that are assigned to each other by a periodic
boundary condition, are replaced by one single vertex, which is now treated as an inner
vertex of the mesh (if it is not part of any other boundary). Since geometric data like co-
ordinates are stored at elements and not at vertices, this modification does not change the
geometry of the problem. Topological information, like element neighborhood, does change.
The method is illustrated in Figure [4.11]

2. Modify the linear system of equations in each iteration (mode 1): Sometimes it is neces-
sary to store geometric information at vertices. E.g., if moving meshes are implemented
with parametric elements, a DOF vector may store the coordinates. In this case, the mesh
topology keeps unchanged, and the periodic boundary conditions are applied, like any other
boundary condition, after the assemblage of the linear system of equations. In the applica-
tion source code a boundary condition object has to be created, and in the macro file the
periodic boundary must be specified.

In this section, we show how to use both variants of periodic boundary conditions. Again, we
use the problem defined in Section We choose Q2 = [-0.2;0.8] x [—0.5;0.5] (we do not use
Q = [-0.5;0.5], because in this example periodic boundary conditions would then be equal to
the trivial zero flux conditions).

We apply a periodic boundary condition which connects the left and the right edge of 2. Since
we do not know the exact solution of this periodic problem, we apply zero Dirichlet conditions at
the lower and upper edge of the domain.

4.6.1 Source code

If we use mode 0, no modifications in the source code have to be made. For mode 1, we have to
add a periodic boundary condition object to the problem.

36 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

4 5 7 g
4 6

3 4 5

4 1 3 |y
0 2

0 1 2
1 1

Figure 4.12: Macro mesh for the two dimensioanl periodic problem.

periodic.addPeriodicBC(—1);

Note that periodic boundary conditions must be described by negative numbers.

4.6.2 Parameter file
In the parameter file, we add an link to the periodic file.
periodicMesh—periodic file: ./'init/periodic.per.2d
The periodic file periodic.per.2d contains the needed periodic information for the mesh.

associations: 2

mode bc ell — local vertices <—> el2 — local vertices
1 —1 4 12 7 2 1
1 —1 0 12 3 2 1

First, the number of edge associations (point associations in 2d, face associations in 3d) is
given. Then each association is described in one line. The first entry is the mode which should
be used for this periodic association. If the mode is 1, the next entry specifies the identifier of
the used boundary condition. This identifier also must be used in the source code and in the
macro file. If the mode is 0, the identifier is ignored. The rest of the line describes, which (local)
vertices of which elements are associated with each other. The first association in this example
is interpreted as follows: The local vertices 1 and 2 of element 4 are associated with the vertices
2 and 1 of element 7. Or more precisely, vertex 1 of element 4 is associated with vertex 2 of
element 7, and vertex 2 of element 4 with vertex 1 of element 7.

4.6.3 Macro file

To avoid degenerated elements, one macro element must not contain two vertices which are
associated with each other. Therefore, we choose a macro mesh with a few more elements,

showed in Figure

The corresponding file periodic.macro.2d looks like:

4.6. PERIODIC BOUNDARY CONDITIONS 37

DIM: 2
DIM.OFWORLD: 2

number of elements: 8
number of vertices: 9

element vertices:
130

314

2 41

425

463

6 47

57 4

758

element boundaries:
-110

000

010

-100

-100

010

000

-110

vertex coordinates:
-0.2 -0.5

0.3 -0.5

0.8 —-0.5

-0.2 0.0

0.3 0.0

0.8 0.0

-0.2 0.5

0.3 0.5

0.8 0.5
element neighbours:
3 -1 1

2 4 0

1 -1 3

0 6 2

7 1 5

6 -1 4

5 3 7

4 -1 6

Compared to the macro file of Section the vertex coordinates are shifted by -0.2 in
x-direction.

In the boundary block —1 specifies the periodic boundary. If we use mode 0, this boundaries
are ignored (Here, the minus sign becomes important! Only boundary conditions with negative
IDs are recognized as periodic boundaries and can be ignored if they are not used).

In the neighbors block, neighborships between elements that are connected by a periodic edge
(point/face) are added. Note that this must also be done for mode 1 periodic boundaries.

38 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

Y

-04-03-02-01 0 0.1 02 0.3 04
|

-02-01 0 0.1 02 03 04 05 06 07 08 X

Figure 4.13: Solution of the problem with periodic boundary conditions at two sides (left) and iso
lines of the solution for the values 0.1,0.2,...,1.1 (right).

PN

Figure 4.14: Boundary projection for a two dimensional mesh. The boundary vertices of the mesh
are projected on the circle.

4.6.4 Output

In Figure [4.13} the solution of our periodic problem is shown as height field at the left hand side.
At the right hand side, one can see iso lines for the values 0.1,0.2, ..., 1.1.

4.7 Projections

In AMDIS, projections can be applied to the vertex coordinates of a mesh. There are two types of
projections:

1. Boundary projections: Only vertices at the domain boundary are projected.
2. Volume projections: All vertices of the mesh are projected.

Projections are applied to all (boundary) vertices of the macro mesh and to each new (boundary)
vertex, created during adaptive refinements. In Figure[d.14] this is illustrated for a two dimensional
mesh which boundary vertices are successively projected to a circle. In Figure [4.15]the vertices
of a one dimensional mesh are successively projected on the circle.

In this section, we give an example for both projection types. As projection we choose the
projection to the unit sphere in 3d. In the first example, we start with the three dimensional cube
[~1,1]® and solve the three dimensional version of problem in it. Furthermore, we apply a
boundary projection to the unit sphere. In the second example, we set the right hand side f of

4.7. PROJECTIONS

Figure 4.15: Volume projection for the one dimensional mesh. All vertices of this mesh are pro-
jected on the circle.

1d | 2d | 3d
source code src/ sphere.cc
parameter file init/ - | - sphere.dat.3d
macro file macro/ - - | sphere.macro.3d
output files output/ | sphere.mesh, sphere.dat

Table 4.7: Files of the sphere example.

equation (4.1) to 2z (xo is the first component of x), and solve on the two dimensional surface
of the sphere. Here, we start with a macro mesh that defines the surface of a cube and apply a
volume projection to it.

4.7.1 Source code

First we define the projection by implementing a sub class BallProject of the base class
Projection.

class BallProject
{
public:
BallProject(int id,
ProjectionType type,
WorldVector<double> ¢er,
double radius)
Projection (id, type),
center_(center),
radius_(radius)

public Projection

{}
1d \ 2d \ 3d
source code src/ ball.cc
parameter file init/ - - ball.dat.3d
macro file macro/ - - | ball.macro.3d
output files output/ ball.mesh, ball.dat

Table 4.8: Files of the ball example.

40 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

void project(WorldVector<double> &x)
{
X —= center_;
double norm = sqrt (xx*x);
TEST_EXIT(norm != 0.0)("can’t project vector x\n”);
X x= radius_/norm;
X += center_;

}

protected:
WorldVector<double> center_;
double radius_;
b
First, in the constructor, the base class constructor is called with a projection identifier and
the projection type which can be BOUNDARY_PROJECTION or VOLUME_PROJECTION. The projection
identifier is used to associated a projection instance to projections defined in the macro file. The
method project implements the concrete projection of a point = in world coordinates.
If we compute on the surface, we redefine the function f.

class F : public AbstractFunction<double, WorldVector<double> >

{
public:
F(int degree) : AbstractFunction<double, WorldVector<double> >(degree) {}
double operator ()(const WorldVector<double>& x) const
{
return —2.0 x x[0];
}
b

In the main program, we create an instance of Bal1lProject with ID 1, center 0 and radius 1. If
we solve in the three dimensional volume of the sphere, the projection type is BOUNDARY_PROJECTION,
because we project only boundary vertices to the sphere.

// ===== create projection =====
WorldVector<double> ballCenter;
ballCenter.set(0.0);
new BallProject(1,
BOUNDARY_PROJECTION,
ballCenter ,
1.0);
If we solve on the two dimensional surface of the sphere, the projection type is VOLUME_PROJECTION,
because all vertices of the mesh are projected.
/]l ===== create projection =====
WorldVector<double> ballCenter;
ballCenter.set(0.0);
new BallProject(1,
VOLUME_PROJECTION,
ballCenter ,
1.0);

4.7.2 Parameter file

First, we present the parameter file for the volume projection case (two dimensional mesh).

4.7. PROJECTIONS
dimension of world: 3

sphereMesh—>macro file name:

./ macro/sphere_macro.3d

sphereMesh—>global refinements: 10
sphere—>mesh: sphereMesh
sphere—dim: 2
sphere—>polynomial degree: 1
sphere—>solver: cg
sphere—>solver—max iteration: 100
sphere—>solver—>tolerance: 1.e-8
sphere—>solver—left precon: diag
sphere—estimator: no
sphere—marker—>strategy: 0

sphere—output—filename:

sphere—>output—AMDIS format:
sphere—output—AMDIS mesh ext:
sphere—>output—AMDIS data ext:

output/sphere
1

.mesh
.dat

41

The world dimension is 3, whereas the mesh dimension is set to 2. We use a macro mesh
which defines the surface of a cube, defined in . /macro/sphere_macro.3d, and apply 10 global
refinements to it. In this example we do not use adaptivity. Thus, no estimator and no marker is

used.

Now, we show the parameter file for the boudary projection case (three dimensional mesh).

dimension of world:

ballMesh—>macro file name:
ballMesh—>global refinements:

3

./ macro/macro. ball.3d
15

ball —>mesh: ballMesh
ball —dim: 3

ball —polynomial degree: 1

ball —solver: cg

ball —>solver—>max iteration: 1000
ball —solver—tolerance: 1.e-8
ball —solver—left precon: diag
ball —>estimator: no

ball —>marker—>strategy: 0

ball —output—filename: output/ball
ball —output—AMDIS format: 1

ball —output—AMDIS mesh ext: .mesh
ball —>output—AMDIS data ext: .dat

The macro mesh is a three dimensional cube, defined in ./macro/macro.ball.3d, and 15

times globally refined.

42 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

4.7.3 Macro file

First, the macro file for the two dimensional mesh.

DIM: 2
DIM.OFWORLD: 3

number of vertices: 8
number of elements: 12

vertex coordinates:
-1.0 1.0 —1.
1.0 1

—_ .
—_

—_

I
—_ -

0
.0
.0
.0
.0
.0
.0
.0

Ooooooo

—_

ent vertices:

QO WO WrANOOIO—=-MNO

ent boundaries:

cNeoNoNoNoNoNoloNoNoNoNol)
cNoNoNoNoNoNoNoNoNoRoNo)

projections:
00

—t etk o
[eNeNeNe]
[eNeNeNe]

4.7. PROJECTIONS 43

P O N = G U G
[eNeoNoNoNoNoNe)
[eNeoNoNeoNoNo N

In the projections block, the projection IDs for each element are listed. There is one entry for
each side of each element. Since we use volume projection, here, only the first entry of a line is
used.

Now, we list the macro file for the three dimensional volume mesh.

DIM: 3
DIM.OF WORLD: 3

number of vertices: 8
number of elements: 6

vertex coordinates:
-1.0 —-1.0 0.0
0.0 -1.0 —-1.0

0.0 -1.0 1.0
1.0 —1.0 0.0
0.0 1.0 -1.0
1.0 1.0 0.0
-1.0 1.0 0.0
0.0 1.0 1.0

element vertices:

[cNeoNoNoNeNe]
G111 o101 o1
NNPAhOWWwhs
NDNOOON = =

element boundaries:

—_ 4
_ e
OO OO OOo
eNeoNoNeNoNe]

element neighbours:
-1 -
-1 -
-1 -
-1 -1
-1 -1
-1 -

NWPHO1I1O =
A OO =MW

projections:

44 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

(@) (b) (©)

Figure 4.17: (a): Solution of the two dimensional problem on the surface of the sphere, (b): Halfed
sphere, (c): Solution of the three dimensional problem (halfed ball).

a4 a4
—_ 4 4 4
[cNeoNoNoNeNe]
[cNeoNoNoNeNe]

Here, we use boundary projections. In the boundary block for each boundary side of an
element the projection ID is given.

4.7.4 Output

In Figure 4.6} the solution of the two dimensional problem is shown on a successively refined
mesh whose vertices are projected on the sphere. The finer the mesh, the better is the approxi-
mation to the sphere.

In Figure [417] (a), the final solution of the two dimensional problem is shown, Figure [4.17] (b)
shows the halfed sphere to demonstrate that the solution is really defined on the sphere. The
solution of the three dimensional problem is shown in Figure [4.17](c).

4.8 Parametric elements

With parametric elements, problems can be solved on meshes which dimensions are not neces-
sarily equal to the world dimension. Therefore, problems on arbitrary manifolds can be solved.

4.8. PARAMETRIC ELEMENTS 45

—’

Figure 4.18: A torus and a halfed torus with the two radiuses r; and .

1d \ 2d \ 3d
source code src/ torus.cc
parameter file init/ - - torus.dat.3d
macro file macro/ - - torus.macro.3d
output files output/ | torus.mesh/.dat, rotationl.mesh/.dat, rotation2.mesh/dat

Table 4.9: Files of the torus example.

Furthermore, the vertex coordinates of the mesh can be flexible. Hence, moving meshes can be
implemented.

In this section, we solve equation with f = 2xq (¢ is the first component of x) on a torus.
Then we rotate the torus about the y-axis and solve the problem again.

The torus can be created by revolving a circle about an axis coplanar with the circle, which
does not touch the circle. We call r; the radius of the revolved circle and r, the radius of the
revolution, which is the distance of the center of the tube to the center of the torus. In Figure [4.18]
a torus with its two radii , and r» is shown.

We create a torus with center (0; 0; 0) and the rotation axis in z-direction (0; 0; 1). The projection
of a point zy on the torus is implemented by the following steps:

1. xz; is the projection of =, on the zy-plane

2. 19 = xlﬁ. Projection of 1 on the sphere with radius r; with center 0. Thereby, x, is used
as the center of a sphere with radius 7.

3. x3 = x¢ — x2. Move coordinate system into the center of the sphere with center 5. Thereby,
x3 contains the coordinates of x in this new coordinate system.

4. 14 =23 2H' Thereby, x4 is the projection of z3 on the sphere with radius r».

_T2
[lzs

5. x5 = x4 + z2. Thereby, x5 contains the coordinates of x4 in the original coordinate system.
It is the projection of =, on the torus.

4.8.1 Source code

First, we define the rotation about the y-axis, which is used later to rotate the whole torus and the
right hand side function.

class YRotation

{
public:

static WorldVector<double>& rotate (WorldVector<double> &x, double angle)

{

46 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

double x0 = x[0] * cos(angle) + x[2] * sin(angle);

x[2] = —x[0] * sin(angle) + x[2] * cos(angle);
x[0] = x0;
return x;
}
b

The right hand side function f has to follow the rotation of the torus.

class F : public AbstractFunction<double, WorldVector<double> >
{
public:
F(int degree)
AbstractFunction<double, WorldVector<double> >(degree),
rotation (0.0)

{h

double operator ()(const WorldVector<double>& x) const

WorldVector<double> myX = x;
YRotation :: rotate (myX, —rotation);

return = —2.0 * myX[0];
}
void rotate (double r)
{
rotation += r;
}
private:

double rotation;

}s

Every time, the mesh is rotated, the right hand side function will be informed over the method
rotate.
Now, we implement the projection on the torus.

class TorusProject : public Projection
{
public:
TorusProject(int id,
ProjectionType type,
double radius1i ,
double radius2)
Projection (id, type),
radius1_(radius1),
radius2_(radius2)

h
virtual “TorusProject() {}
void project(WorldVector<double> &x)

WorldVector<double> xPlane = x;
xPlane[2] = 0.0;

4.8. PARAMETRIC ELEMENTS 47

double norm = std::sqrt(xPlanexxPlane);
TEST_EXIT(norm != 0.0)("can’t project vector x\n”);

WorldVector<double> center = xPlane;
center x= radiusi_. / norm;

x —= center;
norm = std::sqrt(xxx);
TEST_EXIT(norm != 0.0)("can’t project vector x\n”);

X x= radius2_/norm;

X += center;

b

protected:

s

double radiusi_;
double radius2_;

In the main program, we create a torus projection as VOLUME_PROJECTION with ID 1. The values

of r; and r, are chosen, such that the resulting torus is completely surrounded by the macro mesh
that is defined later.

int main(int argc, charx argv[])

{

FUNCNAME (” torus main”);

/] ===== check for init file =====
TEST_EXIT(argc == 2)(”usage: torus initfile\n”);

/l ===== init parameters =====
Parameters::init (false, argv[1]);

// ===== create projection =====
double r2 = (1.5 — 1.0/std::sqrt(2.0)) / 2.0;
double r1 1.0/std::sqrt(2.0) + r2;

new TorusProject(1, VOLUMEPROJECTION, r1, r2);

adapt—adapt ();

torus.writeFiles (adaptinfo, true);

The problem definition and the creation of the adaptation loop are done in the usual way (here,

replaced by . ..) . After the adaptation loop has returned, we write the result.

Before we let the torus rotate, some variables are defined. We set the rotation angle to 4.

double rotation = M_PI/3.0;
int dim = torus.getMesh()—>getDim ();
int dow Global :: getGeo (WORLD) ;

48 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

DegreeOfFreedom dof;
WorldVector<double> x;

const FiniteElemSpace xfeSpace = torus.getFeSpace();
const BasisFunction xbasFcts = feSpace—>getBasisFcts ();
int numBasFcts = basFcts—getNumber () ;

DegreeOfFreedom xlocallndices = new double[numBasFcts];
DOFAdmin xadmin = feSpace—>getAdmin ();

WorldVector<DOFVector<double >+«> parametricCoords;
for (int i = 0; i < dow; i++)
parametricCoords[i] = new DOFVector<double >(feSpace, ”“parametric coords”);

In the next step, we store the rotated vertex coordinates of the mesh in parametricCoords,a
vector of DOF vectors, where the first vector stores the first component of each vertex coordinate,
and so on. In the STL map visited, we store which vertices have already been visited, to avoid
multiple rotations of the same point.

std : :map<DegreeOfFreedom, bool> visited;
TraverseStack stack;
Ellnfo xellnfo = stack.traverseFirst(torus.getMesh(), -1,
Mesh :: CALL_LEAF_EL |
Mesh : : FILL.COORDS) ;
while (ellnfo) {
basFcts—getLocallndices(ellnfo—>getElement(), admin, locallndices);
for (int i = 0; i <dim + 1; i++) {
dof = locallndices]|[i];
x = ellnfo—>getCoord(i);
YRotation :: rotate (x, rotation);
if (!visited[dof]) {
for (int j = 0; j < dow; j++)
(x(parametricCoords[j]))[dof] = x[j];

visited[dof] = true;

}

ellnfo = stack.traverseNext(ellnfo);

}

We create an instance of class ParametricFirstOrder which then is handed to the mesh.
Now, in all future mesh traverses the vertex coordinates stored in parametricCoords are returned,
instead of the original coordinates.

ParametricFirstOrder parametric(¶metricCoords);
torus .getMesh()—>setParametric(¶metric);

We rotate the right hand side function, reset adaptInfo and start the adaptation loop again.
Now, we compute the solution on the rotated torus, which then is written to the files rotationl .mesh
and rotationl.dat.

f.rotate(rotation);
adaptinfo—>reset ();
adapt—adapt ();

DataCollector xdc = new DataCollector(feSpace, torus.getSolution ());
MacroWriter :: writeMacro (dc, ”output/rotation1.mesh”);

4.8. PARAMETRIC ELEMENTS 49

ValueWriter :: writeValues (dc, “output/rotation1.dat”);
delete dc;

We perform another rotation. All we have to do is to modify the coordinates in parametricCoords
and to inform f about the rotation.

visited .clear ();
ellnfo = stack.traverseFirst(torus.getMesh(), -1,
Mesh :: CALL_LEAF_EL | Mesh::FILL.COORDS);
while (ellnfo) {
basFcts—getLocallndices(ellnfo—>getElement(), admin, locallndices);
for (int i = 0; i <dim + 1; i++) {
dof = locallndices]|i];
x = ellnfo—>getCoord(i);
YRotation :: rotate (x, rotation);
if (!visited[dof]) {
for (int j = 0; j < dow; j++)
(x(parametricCoords[j]))[dof] = x[]j];

visited[dof] = true;

}

ellnfo = stack.traverseNext(ellnfo);

}

f.rotate(rotation);
adaptinfo—reset ();
adapt—>adapt ();

dc = new DataCollector(feSpace, torus.getSolution());
MacroWriter :: writeMacro (dc, ”output/rotation1 .mesh”);
ValueWriter :: writeValues (dc, “output/rotation1.dat”);
delete dc;

The solution is written to rotation2.mesh and rotation2.dat.
Finally, we free some memory and finish the main program.
for (int i = 0; i < dow; i++)

delete parametricCoords[i];
delete [] locallndices;

4.8.2 Parameter file

In the parameter file, we set the macro file to . /macro/torus_macro.3d. This two dimensional
mesh is 8 times globally refined and successively projected on the torus.

dimension of world: 3

torusMesh—macro file name: ./ macro/torus_macro.3d
torusMesh—>global refinements: 8

torus —>mesh: torusMesh

torus—>dim: 2

torus—polynomial degree: 1

50 CHAPTER 4. IMPLEMENTATION OF EXAMPLE PROBLEMS

Figure 4.19: Macro mesh of the torus problem.

torus—solver: cg
torus—>solver—>max iteration: 1000
torus—>solver—>tolerance: 1.e-8
torus—solver—left precon: diag
torus—estimator: no

torus —marker: no
torus—output—filename: output/torus
torus—output—AMDIS format: 1

torus—output—AMDIS mesh ext: .mesh
torus—output—AMDIS data ext: .dat

4.8.3 Macro file

The macro mesh defined in . /macro/torus_macro.3d is shown in Figure [4.19]

4.8.4 Output

In Figure [4.20] the solutions on the three tori are shown.

51

4.8. PARAMETRIC ELEMENTS

Figure 4.20: Solution on the original torus and on the two rotated tori.

	Introduction
	Installation
	Installation of the AMDiS library
	Compilation of an example application

	Application makefile
	Implementation of example problems
	Stationary problem with Dirichlet boundary condition
	Source code
	Parameter file
	Macro file
	Output

	Time dependent problem
	Source code
	Parameter file
	Macro file
	Output

	Systems of PDEs
	Source code
	Parameter file
	Macro file
	Output

	Coupled problems
	Source code
	Parameter file
	Macro file
	Output

	Neumann boundary conditions
	Source code
	Parameter file
	Macro file
	Output

	Periodic boundary conditions
	Source code
	Parameter file
	Macro file
	Output

	Projections
	Source code
	Parameter file
	Macro file
	Output

	Parametric elements
	Source code
	Parameter file
	Macro file
	Output

