diff --git a/AMDiS/compositeFEM/src/CFE_Integration.cc b/AMDiS/compositeFEM/src/CFE_Integration.cc index c320acf8dc1f91b580c817b364918559e909953c..8c4e0b29e6a2bfca8ecfef2ab0f406051c4d2083 100644 --- a/AMDiS/compositeFEM/src/CFE_Integration.cc +++ b/AMDiS/compositeFEM/src/CFE_Integration.cc @@ -1,260 +1,242 @@ #include "CFE_Integration.h" - #include "Mesh.h" #include "SurfaceQuadrature.h" #include "Traverse.h" - #include "ScalableQuadrature.h" #include "SubElInfo.h" #include "SubPolytope.h" -double -CFE_Integration::integrate_onNegLs(ElementFunction<double> *f, - ElementLevelSet *elLS, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_Integration::integrate_onNegLs()"); - - int dim = elLS->getDim(); - double int_val = 0.0; - double el_int_val; - double subEl_int_val; - VectorOfFixVecs<DimVec<double> > *intersecPts; - SubPolytope *subPolytope; - int numIntersecPts; - int iq; - double val; - int numQuadPts; - int vertex_interior; - ScalableQuadrature *loc_scalQuad; - int numScalQuadPts; - bool subPolIsExterior = false; - int elStatus; - Mesh *mesh = elLS->getMesh(); - - // ===== Get quadratures. ===== - if (!q) { - q = Quadrature::provideQuadrature(dim, deg); - } - numQuadPts = q->getNumPoints(); - loc_scalQuad = NEW ScalableQuadrature(q); - numScalQuadPts = loc_scalQuad->getNumPoints(); +namespace AMDiS { + + double + CFE_Integration::integrate_onNegLs(ElementFunction<double> *f, + ElementLevelSet *elLS, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_Integration::integrate_onNegLs()"); + + int dim = elLS->getDim(); + double int_val = 0.0; + double el_int_val; + double subEl_int_val; + VectorOfFixVecs<DimVec<double> > *intersecPts; + SubPolytope *subPolytope; + int numIntersecPts; + int iq; + double val; + int numQuadPts; + int vertex_interior; + ScalableQuadrature *loc_scalQuad; + int numScalQuadPts; + bool subPolIsExterior = false; + int elStatus; + Mesh *mesh = elLS->getMesh(); + + // ===== Get quadratures. ===== + if (!q) { + q = Quadrature::provideQuadrature(dim, deg); + } + numQuadPts = q->getNumPoints(); + loc_scalQuad = NEW ScalableQuadrature(q); + numScalQuadPts = loc_scalQuad->getNumPoints(); - // ===== Traverse mesh and calculate integral on each element. ===== - TraverseStack stack; + // ===== Traverse mesh and calculate integral on each element. ===== + TraverseStack stack; - ElInfo *loc_elInfo = stack.traverseFirst(mesh, - -1, - Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET); - while(loc_elInfo) { - el_int_val = 0.0; - subEl_int_val = 0.0; - subPolIsExterior = false; + ElInfo *loc_elInfo = stack.traverseFirst(mesh, + -1, + Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET); + while(loc_elInfo) { + el_int_val = 0.0; + subEl_int_val = 0.0; + subPolIsExterior = false; - // Check whether current element is cut by the zero level set. - elStatus = elLS->createElementLevelSet(loc_elInfo); + // Check whether current element is cut by the zero level set. + elStatus = elLS->createElementLevelSet(loc_elInfo); - if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { + if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { - // ------------------------------------------------------------------- - // Element is cut by the zero level set. - // ------------------------------------------------------------------- + // ------------------------------------------------------------------- + // Element is cut by the zero level set. + // ------------------------------------------------------------------- - // Create subelements. - intersecPts = elLS->getElIntersecPoints(); - numIntersecPts = elLS->getNumElIntersecPoints(); + // Create subelements. + intersecPts = elLS->getElIntersecPoints(); + numIntersecPts = elLS->getNumElIntersecPoints(); - if (dim == 1 || (dim == 3 && numIntersecPts == 4)) { + if (dim == 1 || (dim == 3 && numIntersecPts == 4)) { - // ----------------------------------------------------------------- - // Subelement(s) are inside the domain with negative level set - // function value. + // ----------------------------------------------------------------- + // Subelement(s) are inside the domain with negative level set + // function value. - // Get vertex with negative level set function value. - for (int i=0; i<=dim; ++i) { - if (elLS->getElVertLevelSetVec(i) < 0) { - vertex_interior = i; - break; + // Get vertex with negative level set function value. + for (int i=0; i<=dim; ++i) { + if (elLS->getElVertLevelSetVec(i) < 0) { + vertex_interior = i; + break; + } } - } - subPolytope = NEW SubPolytope(loc_elInfo, - intersecPts, - numIntersecPts, - vertex_interior); - } - else { - - // ----------------------------------------------------------------- - // Subelement may be inside the domain with negative level set - // function value as well as inside the domain with positive - // function value. - // - // Whether a subelement is in the domain with negative or positive - // level set function values is checked by the level set function - // value of the first vertex of the subelement. (The subelements - // are created in such a way that this vertex always is a vertex - // of the element and not an intersection point. Thus the level set - // function value of this vertex really is unequal to zero.) - - subPolytope = NEW SubPolytope(loc_elInfo, - intersecPts, - numIntersecPts, - 0); - - if(elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0)) == - ElementLevelSet::LEVEL_SET_EXTERIOR) { - subPolIsExterior = true; + subPolytope = NEW SubPolytope(loc_elInfo, + intersecPts, + numIntersecPts, + vertex_interior); + } + else { + + // ----------------------------------------------------------------- + // Subelement may be inside the domain with negative level set + // function value as well as inside the domain with positive + // function value. + // + // Whether a subelement is in the domain with negative or positive + // level set function values is checked by the level set function + // value of the first vertex of the subelement. (The subelements + // are created in such a way that this vertex always is a vertex + // of the element and not an intersection point. Thus the level set + // function value of this vertex really is unequal to zero.) + + subPolytope = NEW SubPolytope(loc_elInfo, + intersecPts, + numIntersecPts, + 0); + + if(elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0)) == + ElementLevelSet::LEVEL_SET_EXTERIOR) { + subPolIsExterior = true; + } } - } - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - // Calculate integral on subelement(s). - f->setElInfo(loc_elInfo); - for (std::vector<SubElInfo *>::iterator it = - subPolytope->getSubElementsBegin(); - it != subPolytope->getSubElementsEnd(); - it++) { + // Calculate integral on subelement(s). + f->setElInfo(loc_elInfo); + for (std::vector<SubElInfo *>::iterator it = + subPolytope->getSubElementsBegin(); + it != subPolytope->getSubElementsEnd(); + it++) { + + loc_scalQuad->scaleQuadrature(**it); - loc_scalQuad->scaleQuadrature(**it); + for (val = iq = 0; iq < numScalQuadPts; ++iq) { + val += loc_scalQuad->getWeight(iq)*(*f)(loc_scalQuad->getLambda(iq)); + } + el_int_val += fabs((*it)->getDet()) * val; + } - for (val = iq = 0; iq < numScalQuadPts; ++iq) { - val += loc_scalQuad->getWeight(iq)*(*f)(loc_scalQuad->getLambda(iq)); + // ------------------------------------------------------------------- + // In case the subelement is in the domain with positive level set + // function values: + // Calculate the integral on the element part with negative + // level set function values by substracting the integral on the + // subelement from the integral on the complete element. + if (subPolIsExterior) { + subEl_int_val = el_int_val; + el_int_val = 0.0; + + f->setElInfo(loc_elInfo); + for (val = iq = 0; iq < numQuadPts; ++iq) { + val += q->getWeight(iq)*(*f)(q->getLambda(iq)); + } + el_int_val = loc_elInfo->calcDet()*val - subEl_int_val; } - el_int_val += fabs((*it)->getDet()) * val; + + // Free data. + DELETE subPolytope; } + else if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { - // ------------------------------------------------------------------- - // In case the subelement is in the domain with positive level set - // function values: - // Calculate the integral on the element part with negative - // level set function values by substracting the integral on the - // subelement from the integral on the complete element. - if (subPolIsExterior) { - subEl_int_val = el_int_val; - el_int_val = 0.0; + // ------------------------------------------------------------------- + // Element is in the domain with negative level set function values. + // ------------------------------------------------------------------- + + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); f->setElInfo(loc_elInfo); for (val = iq = 0; iq < numQuadPts; ++iq) { val += q->getWeight(iq)*(*f)(q->getLambda(iq)); } - el_int_val = loc_elInfo->calcDet()*val - subEl_int_val; - } - - // Free data. - DELETE subPolytope; - } - else if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { - - // ------------------------------------------------------------------- - // Element is in the domain with negative level set function values. - // ------------------------------------------------------------------- - - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - - f->setElInfo(loc_elInfo); - for (val = iq = 0; iq < numQuadPts; ++iq) { - val += q->getWeight(iq)*(*f)(q->getLambda(iq)); + el_int_val = loc_elInfo->calcDet() * val; } - el_int_val = loc_elInfo->calcDet() * val; - } - - int_val += el_int_val; - loc_elInfo = stack.traverseNext(loc_elInfo); - } // end of: mesh traverse + int_val += el_int_val; + loc_elInfo = stack.traverseNext(loc_elInfo); - DELETE loc_scalQuad; + } // end of: mesh traverse - return int_val; -} - -double -CFE_Integration::integrate_onZeroLs(ElementFunction<double> *f, - ElementLevelSet *elLS, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_Integration::integrate_onZeroLs()"); - - int dim = elLS->getDim(); - double int_val = 0.0; - VectorOfFixVecs<DimVec<double> > *intersecPts; - int numIntersecPts; - int iq; - double val; - SurfaceQuadrature *surfQuad; - int numQuadPts; - VectorOfFixVecs<DimVec<double> > tmpPts(dim, dim, NO_INIT); - DimVec<double> tmpPt(dim, DEFAULT_VALUE, 0.0); - int elStatus; - Mesh *mesh = elLS->getMesh(); - - // ===== Define default points for surface quadrature. ===== - for (int i=0; i<dim; ++i) { - tmpPt[i] = 1.0; - tmpPts[i] = tmpPt; - tmpPt[i] = 0.0; - } + DELETE loc_scalQuad; - // ===== Get quadratures. ===== - if (!q) { - q = Quadrature::provideQuadrature(dim-1, deg); + return int_val; } - surfQuad = NEW SurfaceQuadrature(q, tmpPts); - numQuadPts = surfQuad->getNumPoints(); + double + CFE_Integration::integrate_onZeroLs(ElementFunction<double> *f, + ElementLevelSet *elLS, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_Integration::integrate_onZeroLs()"); + + int dim = elLS->getDim(); + double int_val = 0.0; + VectorOfFixVecs<DimVec<double> > *intersecPts; + int numIntersecPts; + int iq; + double val; + SurfaceQuadrature *surfQuad; + int numQuadPts; + VectorOfFixVecs<DimVec<double> > tmpPts(dim, dim, NO_INIT); + DimVec<double> tmpPt(dim, DEFAULT_VALUE, 0.0); + int elStatus; + Mesh *mesh = elLS->getMesh(); + + // ===== Define default points for surface quadrature. ===== + for (int i=0; i<dim; ++i) { + tmpPt[i] = 1.0; + tmpPts[i] = tmpPt; + tmpPt[i] = 0.0; + } - // ===== Traverse mesh and calculate integral on each element cut by - // the zero level set. ===== - TraverseStack stack; - - ElInfo *loc_elInfo = stack.traverseFirst(mesh, - -1, - Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET); - while(loc_elInfo) { - - // Check whether current element is cut by the zero level set. - elStatus = elLS->createElementLevelSet(loc_elInfo); + // ===== Get quadratures. ===== + if (!q) { + q = Quadrature::provideQuadrature(dim-1, deg); + } + surfQuad = NEW SurfaceQuadrature(q, tmpPts); + numQuadPts = surfQuad->getNumPoints(); - if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { - - // Get intersection points. - intersecPts = elLS->getElIntersecPoints(); - numIntersecPts = elLS->getNumElIntersecPoints(); - // Calculate surface integral on intersection plane. - f->setElInfo(loc_elInfo); + // ===== Traverse mesh and calculate integral on each element cut by + // the zero level set. ===== + TraverseStack stack; - // Note: The vector *intersecPts has always MAX_INTERSECTION_POINTS - // entries. - for (int i=0; i<dim; ++i) - tmpPts[i] = (*intersecPts)[i]; + ElInfo *loc_elInfo = stack.traverseFirst(mesh, + -1, + Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET); + while(loc_elInfo) { - surfQuad->scaleSurfaceQuadrature(tmpPts); + // Check whether current element is cut by the zero level set. + elStatus = elLS->createElementLevelSet(loc_elInfo); - for (val = iq = 0; iq < numQuadPts; ++iq) { - val += surfQuad->getWeight(iq)*(*f)(surfQuad->getLambda(iq)); - } - int_val += calcSurfaceDet(loc_elInfo, tmpPts) * val; + if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { + + // Get intersection points. + intersecPts = elLS->getElIntersecPoints(); + numIntersecPts = elLS->getNumElIntersecPoints(); - if (dim == 3 && numIntersecPts == 4) { + // Calculate surface integral on intersection plane. + f->setElInfo(loc_elInfo); - // ----------------------------------------------------------------- - // Intersection plane must be divided into two simplices. Calculate - // the surface integral for the second simplex. - // - // Note: The intersection points S0, S1, S2, S3 are supposed to be - // alligned in such a manner that a line through S1 and S2 - // divides the intersection plane. - tmpPts[0] = (*intersecPts)[3]; + // Note: The vector *intersecPts has always MAX_INTERSECTION_POINTS + // entries. + for (int i=0; i<dim; ++i) + tmpPts[i] = (*intersecPts)[i]; surfQuad->scaleSurfaceQuadrature(tmpPts); @@ -262,33 +244,53 @@ CFE_Integration::integrate_onZeroLs(ElementFunction<double> *f, val += surfQuad->getWeight(iq)*(*f)(surfQuad->getLambda(iq)); } int_val += calcSurfaceDet(loc_elInfo, tmpPts) * val; + + if (dim == 3 && numIntersecPts == 4) { + + // ----------------------------------------------------------------- + // Intersection plane must be divided into two simplices. Calculate + // the surface integral for the second simplex. + // + // Note: The intersection points S0, S1, S2, S3 are supposed to be + // alligned in such a manner that a line through S1 and S2 + // divides the intersection plane. + tmpPts[0] = (*intersecPts)[3]; + + surfQuad->scaleSurfaceQuadrature(tmpPts); + + for (val = iq = 0; iq < numQuadPts; ++iq) { + val += surfQuad->getWeight(iq)*(*f)(surfQuad->getLambda(iq)); + } + int_val += calcSurfaceDet(loc_elInfo, tmpPts) * val; + } } - } - loc_elInfo = stack.traverseNext(loc_elInfo); + loc_elInfo = stack.traverseNext(loc_elInfo); - } // end of: mesh traverse + } // end of: mesh traverse - DELETE surfQuad; + DELETE surfQuad; - return int_val; -} + return int_val; + } -double -CFE_Integration::calcSurfaceDet(ElInfo *loc_elInfo, - VectorOfFixVecs<DimVec<double> > &surfVert) -{ - double surfDet; - int dim = surfVert[0].getSize()-1; - FixVec<WorldVector<double>, VERTEX> worldCoords(dim-1, NO_INIT); + double + CFE_Integration::calcSurfaceDet(ElInfo *loc_elInfo, + VectorOfFixVecs<DimVec<double> > &surfVert) + { + double surfDet; + int dim = surfVert[0].getSize()-1; + FixVec<WorldVector<double>, VERTEX> worldCoords(dim-1, NO_INIT); - // transform barycentric coords to world coords - for(int i = 0; i < dim; i++) { - loc_elInfo->coordToWorld(surfVert[i], &worldCoords[i]); - } + // transform barycentric coords to world coords + for(int i = 0; i < dim; i++) { + loc_elInfo->coordToWorld(surfVert[i], &worldCoords[i]); + } - // calculate determinant for surface - surfDet = ElInfo::calcDet(worldCoords); + // calculate determinant for surface + surfDet = ElInfo::calcDet(worldCoords); + + return surfDet; + } - return surfDet; } diff --git a/AMDiS/compositeFEM/src/CFE_Integration.h b/AMDiS/compositeFEM/src/CFE_Integration.h index 4c1fa133c7602a8f11c3f2d8fe35aa4e15d7abc2..3e2b22fa7ff8cdddf3c62b300af9eec89e52e37d 100644 --- a/AMDiS/compositeFEM/src/CFE_Integration.h +++ b/AMDiS/compositeFEM/src/CFE_Integration.h @@ -4,40 +4,41 @@ #include "ElementFunction.h" #include "MemoryManager.h" #include "Quadrature.h" - #include "ElementLevelSet.h" -using namespace AMDiS; +namespace AMDiS { + + class CFE_Integration + { + public: + MEMORY_MANAGED(CFE_Integration); -class CFE_Integration -{ - public: - MEMORY_MANAGED(CFE_Integration); + /** + * Calculates integral of function f on domain where level set function + * is negative. + */ + static double integrate_onNegLs(ElementFunction<double> *f, + ElementLevelSet *elLS, + int deg = 1, + Quadrature *q = NULL); - /** - * Calculates integral of function f on domain where level set function - * is negative. - */ - static double integrate_onNegLs(ElementFunction<double> *f, - ElementLevelSet *elLS, - int deg = 1, - Quadrature *q = NULL); + /** + * Calculates surface integral of function f on the zero level set. + * + * Note: Quadrature q is a quadrature formula for dimension dim-1. + */ + static double integrate_onZeroLs(ElementFunction<double> *f, + ElementLevelSet *elLS, + int deg = 1, + Quadrature *q = NULL); + protected: + /** + * Calculates determinant for surface given through surfVert. + */ + static double calcSurfaceDet(ElInfo *loc_elInfo, + VectorOfFixVecs<DimVec<double> > &surfVert); + }; - /** - * Calculates surface integral of function f on the zero level set. - * - * Note: Quadrature q is a quadrature formula for dimension dim-1. - */ - static double integrate_onZeroLs(ElementFunction<double> *f, - ElementLevelSet *elLS, - int deg = 1, - Quadrature *q = NULL); - protected: - /** - * Calculates determinant for surface given through surfVert. - */ - static double calcSurfaceDet(ElInfo *loc_elInfo, - VectorOfFixVecs<DimVec<double> > &surfVert); -}; +} #endif // AMDIS_CFE_INTEGRATION_H diff --git a/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.cc b/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.cc index 0cee8c39370f83ff495bbc90e79e0fd1ccb710b6..6ac83b9a1969055e9b74130609428d4a369dbb08 100644 --- a/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.cc +++ b/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.cc @@ -1,443 +1,566 @@ -#include "CFE_NormAndErrorFcts.h" - #include <vector> +#include "CFE_NormAndErrorFcts.h" #include "Mesh.h" #include "Traverse.h" - #include "SubElInfo.h" -double CFE_NormAndErrorFcts::L2_err_abs = 0.0; -double CFE_NormAndErrorFcts::L2_u_norm = 0.0; -double CFE_NormAndErrorFcts::H1_err_abs = 0.0; -double CFE_NormAndErrorFcts::H1_u_norm = 0.0; - -double -ElementL1Norm_Analyt::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - const WorldVector<double> *worldCoordsAtQP; - - for (int iq = 0; iq < nQPts; ++iq) { - worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); - val += q->getWeight(iq) * fabs((*f)(*worldCoordsAtQP)); - } - double nrm = det * val; +namespace AMDiS { - return nrm; -} + double CFE_NormAndErrorFcts::L2_err_abs = 0.0; + double CFE_NormAndErrorFcts::L2_u_norm = 0.0; + double CFE_NormAndErrorFcts::H1_err_abs = 0.0; + double CFE_NormAndErrorFcts::H1_u_norm = 0.0; + + double + ElementL1Norm_Analyt::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + const WorldVector<double> *worldCoordsAtQP; + + for (int iq = 0; iq < nQPts; ++iq) { + worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); + val += q->getWeight(iq) * fabs((*f)(*worldCoordsAtQP)); + } + double nrm = det * val; -double -ElementL2Norm_Analyt::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - const WorldVector<double> *worldCoordsAtQP; - - for (int iq = 0; iq < nQPts; ++iq) { - worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); - val += q->getWeight(iq) * sqr((*f)(*worldCoordsAtQP)); + return nrm; } - double nrm = det * val; - return nrm; -} + double + ElementL2Norm_Analyt::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + const WorldVector<double> *worldCoordsAtQP; + + for (int iq = 0; iq < nQPts; ++iq) { + worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); + val += q->getWeight(iq) * sqr((*f)(*worldCoordsAtQP)); + } + double nrm = det * val; + + return nrm; + } -double -ElementH1Norm_Analyt::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - double norm_grd2; - const WorldVector<double> *worldCoordsAtQP; - - for (int iq = 0; iq < nQPts; ++iq) { - worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); + double + ElementH1Norm_Analyt::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + double norm_grd2; + const WorldVector<double> *worldCoordsAtQP; + + for (int iq = 0; iq < nQPts; ++iq) { + worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); - norm_grd2 = 0.0; - for (int j = 0; j < dim; j++) - norm_grd2 += sqr(((*grd)(*worldCoordsAtQP))[j]); + norm_grd2 = 0.0; + for (int j = 0; j < dim; j++) + norm_grd2 += sqr(((*grd)(*worldCoordsAtQP))[j]); - val += q->getWeight(iq) * norm_grd2; + val += q->getWeight(iq) * norm_grd2; + } + double nrm = det * val; + + return nrm; } - double nrm = det * val; - return nrm; -} + double + ElementL1Norm_DOF::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + const double *dofAtQPs = dofVec->getVecAtQPs(elInfo, + q, + NULL, + NULL); + + for (int iq = 0; iq < nQPts; ++iq) { + val += q->getWeight(iq) * fabs(dofAtQPs[iq]); + } + double nrm = det * val; -double -ElementL1Norm_DOF::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - const double *dofAtQPs = dofVec->getVecAtQPs(elInfo, - q, - NULL, - NULL); - - for (int iq = 0; iq < nQPts; ++iq) { - val += q->getWeight(iq) * fabs(dofAtQPs[iq]); + return nrm; } - double nrm = det * val; - return nrm; -} + double + ElementL2Norm_DOF::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + const double *dofAtQPs = dofVec->getVecAtQPs(elInfo, + q, + NULL, + NULL); + + for (int iq = 0; iq < nQPts; ++iq) { + val += q->getWeight(iq) * sqr(dofAtQPs[iq]); + } + double nrm = det * val; -double -ElementL2Norm_DOF::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - const double *dofAtQPs = dofVec->getVecAtQPs(elInfo, - q, - NULL, - NULL); - - for (int iq = 0; iq < nQPts; ++iq) { - val += q->getWeight(iq) * sqr(dofAtQPs[iq]); + return nrm; } - double nrm = det * val; - return nrm; -} - -double -ElementH1Norm_DOF::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - double norm_grd2; - const WorldVector<double> *grdDofAtQPs = dofVec->getGrdAtQPs(elInfo, - q, - NULL, - NULL); - - for (int iq = 0; iq < nQPts; ++iq) { + double + ElementH1Norm_DOF::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + double norm_grd2; + const WorldVector<double> *grdDofAtQPs = dofVec->getGrdAtQPs(elInfo, + q, + NULL, + NULL); + + for (int iq = 0; iq < nQPts; ++iq) { - norm_grd2 = 0.0; - for (int j = 0; j < dim; ++j) - norm_grd2 += sqr(grdDofAtQPs[iq][j]); + norm_grd2 = 0.0; + for (int j = 0; j < dim; ++j) + norm_grd2 += sqr(grdDofAtQPs[iq][j]); - val += q->getWeight(iq) * norm_grd2; - } - double nrm = det * val; + val += q->getWeight(iq) * norm_grd2; + } + double nrm = det * val; - return nrm; -} + return nrm; + } -double -ElementL2Err::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - double val_nrm = 0.0; - const double *uhAtQPs = uh->getVecAtQPs(elInfo, - q, - NULL, - NULL); - const WorldVector<double> *worldCoordsAtQP; - - for (int iq = 0; iq < nQPts; ++iq) { - worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); - val += q->getWeight(iq) * sqr((*u)(*worldCoordsAtQP) - uhAtQPs[iq]); + double + ElementL2Err::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + double val_nrm = 0.0; + const double *uhAtQPs = uh->getVecAtQPs(elInfo, + q, + NULL, + NULL); + const WorldVector<double> *worldCoordsAtQP; + + for (int iq = 0; iq < nQPts; ++iq) { + worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); + val += q->getWeight(iq) * sqr((*u)(*worldCoordsAtQP) - uhAtQPs[iq]); - if (relErr) - val_nrm += q->getWeight(iq) * sqr((*u)(*worldCoordsAtQP)); - } + if (relErr) + val_nrm += q->getWeight(iq) * sqr((*u)(*worldCoordsAtQP)); + } - double err = det * val; + double err = det * val; - if (relErr) - nrmU += fac * det * val_nrm; + if (relErr) + nrmU += fac * det * val_nrm; - return err; -} + return err; + } -double -ElementH1Err::calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac) -{ - double val = 0.0; - double val_nrm = 0.0; - double norm_err_grd2; - double norm_grd2; - const WorldVector<double> *grdUhAtQPs = uh->getGrdAtQPs(elInfo, - q, - NULL, - NULL); - const WorldVector<double> *worldCoordsAtQP; - - for (int iq = 0; iq < nQPts; ++iq) { - - worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); - - norm_err_grd2 = 0.0; - for (int j = 0; j < dim; ++j) - norm_err_grd2 += - sqr(((*grdu)(*worldCoordsAtQP))[j] - grdUhAtQPs[iq][j]); + double + ElementH1Err::calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac) + { + double val = 0.0; + double val_nrm = 0.0; + double norm_err_grd2; + double norm_grd2; + const WorldVector<double> *grdUhAtQPs = uh->getGrdAtQPs(elInfo, + q, + NULL, + NULL); + const WorldVector<double> *worldCoordsAtQP; + + for (int iq = 0; iq < nQPts; ++iq) { + + worldCoordsAtQP = elInfo->coordToWorld(q->getLambda(iq), NULL); + + norm_err_grd2 = 0.0; + for (int j = 0; j < dim; ++j) + norm_err_grd2 += + sqr(((*grdu)(*worldCoordsAtQP))[j] - grdUhAtQPs[iq][j]); - val += q->getWeight(iq) * norm_err_grd2; + val += q->getWeight(iq) * norm_err_grd2; - if (relErr) { - norm_grd2 = 0.0; - for (int j = 0; j < dim; ++j) - norm_grd2 += sqr(((*grdu)(*worldCoordsAtQP))[j]); + if (relErr) { + norm_grd2 = 0.0; + for (int j = 0; j < dim; ++j) + norm_grd2 += sqr(((*grdu)(*worldCoordsAtQP))[j]); - val_nrm += q->getWeight(iq) * norm_grd2; + val_nrm += q->getWeight(iq) * norm_grd2; + } } - } - double err = det * val; + double err = det * val; - if (relErr) - nrmGrdU += fac * det * val_nrm; + if (relErr) + nrmGrdU += fac * det * val_nrm; - return err; -} - -double -CFE_NormAndErrorFcts::Norm_IntNoBound(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::Norm_IntNoBound()"); - - int dim = elLS->getDim(); - Mesh *mesh = elLS->getMesh(); - double nrm = 0.0; - int elStatus; - - // ===== Get quadratures. ===== - if (!q) { - q = Quadrature::provideQuadrature(dim, deg); + return err; } - elNorm->setQuadrature(q); + double + CFE_NormAndErrorFcts::Norm_IntNoBound(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::Norm_IntNoBound()"); + + int dim = elLS->getDim(); + Mesh *mesh = elLS->getMesh(); + double nrm = 0.0; + int elStatus; + + // ===== Get quadratures. ===== + if (!q) { + q = Quadrature::provideQuadrature(dim, deg); + } + elNorm->setQuadrature(q); - // ===== Traverse mesh and calculate integral on each element. ===== - TraverseStack stack; - ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); + // ===== Traverse mesh and calculate integral on each element. ===== + TraverseStack stack; - while(elInfo) { + ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); - // Check whether current element is cut by the zero level set. - elStatus = elLS->createElementLevelSet(elInfo); + while(elInfo) { - if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { + // Check whether current element is cut by the zero level set. + elStatus = elLS->createElementLevelSet(elInfo); - // ------------------------------------------------------------------- - // Element is in the domain with negative level set function values. - // ------------------------------------------------------------------- + if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + // ------------------------------------------------------------------- + // Element is in the domain with negative level set function values. + // ------------------------------------------------------------------- - nrm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - } + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - elInfo = stack.traverseNext(elInfo); + nrm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); + } - } // end of: mesh traverse + elInfo = stack.traverseNext(elInfo); - return nrm; -} + } // end of: mesh traverse -double -CFE_NormAndErrorFcts::Norm_IntBound(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::Norm_IntBound()"); - - int dim = elLS->getDim(); - Mesh *mesh = elLS->getMesh(); - double nrm = 0.0; - double el_norm; - VectorOfFixVecs<DimVec<double> > *intersecPts; - int numIntersecPts; - SubPolytope *subPolytope; - ScalableQuadrature *scalQuad; - int nScalQPts; - int elStatus; - - // ===== Get quadratures. ===== - if (!q) { - q = Quadrature::provideQuadrature(dim, deg); + return nrm; } - scalQuad = NEW ScalableQuadrature(q); - nScalQPts = scalQuad->getNumPoints(); + double + CFE_NormAndErrorFcts::Norm_IntBound(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::Norm_IntBound()"); + + int dim = elLS->getDim(); + Mesh *mesh = elLS->getMesh(); + double nrm = 0.0; + double el_norm; + VectorOfFixVecs<DimVec<double> > *intersecPts; + int numIntersecPts; + SubPolytope *subPolytope; + ScalableQuadrature *scalQuad; + int nScalQPts; + int elStatus; + + // ===== Get quadratures. ===== + if (!q) { + q = Quadrature::provideQuadrature(dim, deg); + } + scalQuad = NEW ScalableQuadrature(q); + nScalQPts = scalQuad->getNumPoints(); - // ===== Traverse mesh and calculate integral on each element. ===== - TraverseStack stack; - ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); + // ===== Traverse mesh and calculate integral on each element. ===== + TraverseStack stack; - while(elInfo) { - el_norm = 0.0; + ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); - // Check whether current element is cut by the zero level set. - elStatus = elLS->createElementLevelSet(elInfo); + while(elInfo) { + el_norm = 0.0; - if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { + // Check whether current element is cut by the zero level set. + elStatus = elLS->createElementLevelSet(elInfo); - // ------------------------------------------------------------------- - // Element is cut by the zero level set. - // ------------------------------------------------------------------- + if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { - // Calculate norm on subpolyope. - intersecPts = elLS->getElIntersecPoints(); - numIntersecPts = elLS->getNumElIntersecPoints(); + // ------------------------------------------------------------------- + // Element is cut by the zero level set. + // ------------------------------------------------------------------- - // ----------------------------------------------------------------- - // Subelement may be inside the domain with negative level set - // function value as well as inside the domain with positive - // function value. - // - // Whether a subelement is in the domain with negative or positive - // level set function values is checked by the level set function - // value of the first vertex of the subelement. (The subelements - // are created in such a way that this vertex always is a vertex - // of the element and not an intersection point. Thus the level set - // function value of this vertex really is unequal to zero.) + // Calculate norm on subpolyope. + intersecPts = elLS->getElIntersecPoints(); + numIntersecPts = elLS->getNumElIntersecPoints(); - subPolytope = NEW SubPolytope(elInfo, - intersecPts, - numIntersecPts, - 0); + // ----------------------------------------------------------------- + // Subelement may be inside the domain with negative level set + // function value as well as inside the domain with positive + // function value. + // + // Whether a subelement is in the domain with negative or positive + // level set function values is checked by the level set function + // value of the first vertex of the subelement. (The subelements + // are created in such a way that this vertex always is a vertex + // of the element and not an intersection point. Thus the level set + // function value of this vertex really is unequal to zero.) + + subPolytope = NEW SubPolytope(elInfo, + intersecPts, + numIntersecPts, + 0); - elLS->setLevelSetDomain( - elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); + elLS->setLevelSetDomain( + elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); - el_norm = calcSubPolNorm(elInfo, - subPolytope, - elNorm, - scalQuad); + el_norm = calcSubPolNorm(elInfo, + subPolytope, + elNorm, + scalQuad); - // Calculate integral on the other element part. - if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - else - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_EXTERIOR); + // Calculate integral on the other element part. + if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + else + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_EXTERIOR); - elNorm->setQuadrature(q); - el_norm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); + elNorm->setQuadrature(q); + el_norm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - el_norm -= calcSubPolNorm(elInfo, - subPolytope, - elNorm, - scalQuad, - -1.0); + el_norm -= calcSubPolNorm(elInfo, + subPolytope, + elNorm, + scalQuad, + -1.0); - nrm += el_norm; + nrm += el_norm; - // Free data. - DELETE subPolytope; - } - else if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { - - // ------------------------------------------------------------------- - // Element is in the domain with negative level set function values. - // ------------------------------------------------------------------- + // Free data. + DELETE subPolytope; + } + else if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + // ------------------------------------------------------------------- + // Element is in the domain with negative level set function values. + // ------------------------------------------------------------------- - elNorm->setQuadrature(q); - nrm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - } + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - elInfo = stack.traverseNext(elInfo); + elNorm->setQuadrature(q); + nrm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); + } - } // end of: mesh traverse + elInfo = stack.traverseNext(elInfo); - DELETE scalQuad; + } // end of: mesh traverse - return nrm; -} + DELETE scalQuad; -double -CFE_NormAndErrorFcts::Norm_Int(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::Norm_Int()"); - - int dim = elLS->getDim(); - Mesh *mesh = elLS->getMesh(); - double nrm = 0.0; - double el_norm; - VectorOfFixVecs<DimVec<double> > *intersecPts; - int numIntersecPts; - int vertex_interior; - SubPolytope *subPolytope; - ScalableQuadrature *scalQuad; - int nScalQPts; - int elStatus; - - // ===== Get quadratures. ===== - if (!q) { - q = Quadrature::provideQuadrature(dim, deg); + return nrm; } - scalQuad = NEW ScalableQuadrature(q); - nScalQPts = scalQuad->getNumPoints(); + double + CFE_NormAndErrorFcts::Norm_Int(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::Norm_Int()"); + + int dim = elLS->getDim(); + Mesh *mesh = elLS->getMesh(); + double nrm = 0.0; + double el_norm; + VectorOfFixVecs<DimVec<double> > *intersecPts; + int numIntersecPts; + int vertex_interior; + SubPolytope *subPolytope; + ScalableQuadrature *scalQuad; + int nScalQPts; + int elStatus; + + // ===== Get quadratures. ===== + if (!q) { + q = Quadrature::provideQuadrature(dim, deg); + } + scalQuad = NEW ScalableQuadrature(q); + nScalQPts = scalQuad->getNumPoints(); - // ===== Traverse mesh and calculate integral on each element. ===== - TraverseStack stack; - ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); + // ===== Traverse mesh and calculate integral on each element. ===== + TraverseStack stack; - while(elInfo) { - el_norm = 0.0; + ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); - // Check whether current element is cut by the zero level set. - elStatus = elLS->createElementLevelSet(elInfo); + while(elInfo) { + el_norm = 0.0; - if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { + // Check whether current element is cut by the zero level set. + elStatus = elLS->createElementLevelSet(elInfo); - // ------------------------------------------------------------------- - // Element is cut by the zero level set. - // ------------------------------------------------------------------- + if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { - // Create subelements. - intersecPts = elLS->getElIntersecPoints(); - numIntersecPts = elLS->getNumElIntersecPoints(); + // ------------------------------------------------------------------- + // Element is cut by the zero level set. + // ------------------------------------------------------------------- - if (dim == 1 || (dim == 3 && numIntersecPts == 4)) { + // Create subelements. + intersecPts = elLS->getElIntersecPoints(); + numIntersecPts = elLS->getNumElIntersecPoints(); - // ----------------------------------------------------------------- - // Subelement(s) are inside the domain with negative level set - // function value. + if (dim == 1 || (dim == 3 && numIntersecPts == 4)) { + + // ----------------------------------------------------------------- + // Subelement(s) are inside the domain with negative level set + // function value. - // Get vertex with negative level set function value. - for (int i=0; i<=dim; ++i) { - if (elLS->getElVertLevelSetVec(i) < 0) { - vertex_interior = i; - break; + // Get vertex with negative level set function value. + for (int i=0; i<=dim; ++i) { + if (elLS->getElVertLevelSetVec(i) < 0) { + vertex_interior = i; + break; + } } + + subPolytope = NEW SubPolytope(elInfo, + intersecPts, + numIntersecPts, + vertex_interior); + + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + } + else { + + // ----------------------------------------------------------------- + // Subelement may be inside the domain with negative level set + // function value as well as inside the domain with positive + // function value. + // + // Whether a subelement is in the domain with negative or positive + // level set function values is checked by the level set function + // value of the first vertex of the subelement. (The subelements + // are created in such a way that this vertex always is a vertex + // of the element and not an intersection point. Thus the level set + // function value of this vertex really is unequal to zero.) + + subPolytope = NEW SubPolytope(elInfo, + intersecPts, + numIntersecPts, + 0); + + elLS->setLevelSetDomain( + elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); } - subPolytope = NEW SubPolytope(elInfo, - intersecPts, - numIntersecPts, - vertex_interior); + // Calculate norm on subpolytope. + if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_INTERIOR) + el_norm = calcSubPolNorm(elInfo, + subPolytope, + elNorm, + scalQuad); + else + el_norm = calcSubPolNorm(elInfo, + subPolytope, + elNorm, + scalQuad, + -1.0); + + // ------------------------------------------------------------------- + // In case the subelement is in the domain with positive level set + // function values: + // Calculate the integral on the element part with negative + // level set function values by substracting the integral on the + // subelement from the integral on the complete element. + if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) { + + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + + elNorm->setQuadrature(q); + el_norm *= -1.0; + el_norm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); + } + + // Free data. + DELETE subPolytope; + } + else if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { + + // ------------------------------------------------------------------- + // Element is in the domain with negative level set function values. + // ------------------------------------------------------------------- elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + + elNorm->setQuadrature(q); + el_norm = elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); } - else { + + nrm += el_norm; + elInfo = stack.traverseNext(elInfo); + + } // end of: mesh traverse + + DELETE scalQuad; + + return nrm; + } + + double + CFE_NormAndErrorFcts::Norm_Bound(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::Norm_Bound()"); + + int dim = elLS->getDim(); + Mesh *mesh = elLS->getMesh(); + double nrm = 0.0; + double el_norm; + VectorOfFixVecs<DimVec<double> > *intersecPts; + int numIntersecPts; + SubPolytope *subPolytope; + ScalableQuadrature *scalQuad; + int nScalQPts; + int elStatus; + + // ===== Get quadratures. ===== + if (!q) { + q = Quadrature::provideQuadrature(dim, deg); + } + scalQuad = NEW ScalableQuadrature(q); + nScalQPts = scalQuad->getNumPoints(); + + + // ===== Traverse mesh and calculate integral on each element. ===== + TraverseStack stack; + + ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); + + while(elInfo) { + el_norm = 0.0; + + // Check whether current element is cut by the zero level set. + elStatus = elLS->createElementLevelSet(elInfo); + + if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { + + // ------------------------------------------------------------------- + // Element is cut by the zero level set. + // ------------------------------------------------------------------- + + // Calculate norm on subpolyope. + intersecPts = elLS->getElIntersecPoints(); + numIntersecPts = elLS->getNumElIntersecPoints(); // ----------------------------------------------------------------- // Subelement may be inside the domain with negative level set @@ -457,692 +580,571 @@ CFE_NormAndErrorFcts::Norm_Int(ElementNorm *elNorm, 0); elLS->setLevelSetDomain( - elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); - } + elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); - // Calculate norm on subpolytope. - if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_INTERIOR) el_norm = calcSubPolNorm(elInfo, subPolytope, elNorm, scalQuad); - else - el_norm = calcSubPolNorm(elInfo, - subPolytope, - elNorm, - scalQuad, - -1.0); - // ------------------------------------------------------------------- - // In case the subelement is in the domain with positive level set - // function values: - // Calculate the integral on the element part with negative - // level set function values by substracting the integral on the - // subelement from the integral on the complete element. - if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) { - - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + // Calculate integral on the other element part. + if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + else + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_EXTERIOR); elNorm->setQuadrature(q); - el_norm *= -1.0; el_norm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - } - - // Free data. - DELETE subPolytope; - } - else if (elStatus == ElementLevelSet::LEVEL_SET_INTERIOR) { - - // ------------------------------------------------------------------- - // Element is in the domain with negative level set function values. - // ------------------------------------------------------------------- - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - - elNorm->setQuadrature(q); - el_norm = elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - } + el_norm -= calcSubPolNorm(elInfo, + subPolytope, + elNorm, + scalQuad, + -1.0); - nrm += el_norm; - elInfo = stack.traverseNext(elInfo); + nrm += el_norm; + + // Free data. + DELETE subPolytope; + } - } // end of: mesh traverse + elInfo = stack.traverseNext(elInfo); - DELETE scalQuad; + } // end of: mesh traverse - return nrm; -} + DELETE scalQuad; -double -CFE_NormAndErrorFcts::Norm_Bound(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::Norm_Bound()"); - - int dim = elLS->getDim(); - Mesh *mesh = elLS->getMesh(); - double nrm = 0.0; - double el_norm; - VectorOfFixVecs<DimVec<double> > *intersecPts; - int numIntersecPts; - SubPolytope *subPolytope; - ScalableQuadrature *scalQuad; - int nScalQPts; - int elStatus; - - // ===== Get quadratures. ===== - if (!q) { - q = Quadrature::provideQuadrature(dim, deg); + return nrm; } - scalQuad = NEW ScalableQuadrature(q); - nScalQPts = scalQuad->getNumPoints(); - - - // ===== Traverse mesh and calculate integral on each element. ===== - TraverseStack stack; - - ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); - - while(elInfo) { - el_norm = 0.0; - - // Check whether current element is cut by the zero level set. - elStatus = elLS->createElementLevelSet(elInfo); - if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { - - // ------------------------------------------------------------------- - // Element is cut by the zero level set. - // ------------------------------------------------------------------- - - // Calculate norm on subpolyope. - intersecPts = elLS->getElIntersecPoints(); - numIntersecPts = elLS->getNumElIntersecPoints(); - - // ----------------------------------------------------------------- - // Subelement may be inside the domain with negative level set - // function value as well as inside the domain with positive - // function value. - // - // Whether a subelement is in the domain with negative or positive - // level set function values is checked by the level set function - // value of the first vertex of the subelement. (The subelements - // are created in such a way that this vertex always is a vertex - // of the element and not an intersection point. Thus the level set - // function value of this vertex really is unequal to zero.) - - subPolytope = NEW SubPolytope(elInfo, - intersecPts, - numIntersecPts, - 0); - - elLS->setLevelSetDomain( - elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); - - el_norm = calcSubPolNorm(elInfo, - subPolytope, - elNorm, - scalQuad); - - // Calculate integral on the other element part. - if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - else - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_EXTERIOR); - - elNorm->setQuadrature(q); - el_norm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - - el_norm -= calcSubPolNorm(elInfo, - subPolytope, - elNorm, - scalQuad, - -1.0); - - nrm += el_norm; - - // Free data. - DELETE subPolytope; + double + CFE_NormAndErrorFcts::Norm_Complete(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::Norm_Complete()"); + + int dim = elLS->getDim(); + Mesh *mesh = elLS->getMesh(); + double nrm = 0.0; + double el_norm; + VectorOfFixVecs<DimVec<double> > *intersecPts; + int numIntersecPts; + SubPolytope *subPolytope; + ScalableQuadrature *scalQuad; + int nScalQPts; + int elStatus; + + // ===== Get quadratures. ===== + if (!q) { + q = Quadrature::provideQuadrature(dim, deg); } - - elInfo = stack.traverseNext(elInfo); - - } // end of: mesh traverse - - DELETE scalQuad; - - return nrm; -} - -double -CFE_NormAndErrorFcts::Norm_Complete(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::Norm_Complete()"); - - int dim = elLS->getDim(); - Mesh *mesh = elLS->getMesh(); - double nrm = 0.0; - double el_norm; - VectorOfFixVecs<DimVec<double> > *intersecPts; - int numIntersecPts; - SubPolytope *subPolytope; - ScalableQuadrature *scalQuad; - int nScalQPts; - int elStatus; - - // ===== Get quadratures. ===== - if (!q) { - q = Quadrature::provideQuadrature(dim, deg); - } - scalQuad = NEW ScalableQuadrature(q); - nScalQPts = scalQuad->getNumPoints(); + scalQuad = NEW ScalableQuadrature(q); + nScalQPts = scalQuad->getNumPoints(); - // ===== Traverse mesh and calculate integral on each element. ===== - TraverseStack stack; + // ===== Traverse mesh and calculate integral on each element. ===== + TraverseStack stack; - ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); + ElInfo *elInfo = stack.traverseFirst(mesh, -1, fillFlag); - while(elInfo) { - el_norm = 0.0; + while(elInfo) { + el_norm = 0.0; - // Check whether current element is cut by the zero level set. - elStatus = elLS->createElementLevelSet(elInfo); + // Check whether current element is cut by the zero level set. + elStatus = elLS->createElementLevelSet(elInfo); - if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { + if (elStatus == ElementLevelSet::LEVEL_SET_BOUNDARY) { - // ------------------------------------------------------------------- - // Element is cut by the zero level set. - // ------------------------------------------------------------------- + // ------------------------------------------------------------------- + // Element is cut by the zero level set. + // ------------------------------------------------------------------- - // Calculate norm on subpolyope. - intersecPts = elLS->getElIntersecPoints(); - numIntersecPts = elLS->getNumElIntersecPoints(); + // Calculate norm on subpolyope. + intersecPts = elLS->getElIntersecPoints(); + numIntersecPts = elLS->getNumElIntersecPoints(); - // ----------------------------------------------------------------- - // Subelement may be inside the domain with negative level set - // function value as well as inside the domain with positive - // function value. - // - // Whether a subelement is in the domain with negative or positive - // level set function values is checked by the level set function - // value of the first vertex of the subelement. (The subelements - // are created in such a way that this vertex always is a vertex - // of the element and not an intersection point. Thus the level set - // function value of this vertex really is unequal to zero.) + // ----------------------------------------------------------------- + // Subelement may be inside the domain with negative level set + // function value as well as inside the domain with positive + // function value. + // + // Whether a subelement is in the domain with negative or positive + // level set function values is checked by the level set function + // value of the first vertex of the subelement. (The subelements + // are created in such a way that this vertex always is a vertex + // of the element and not an intersection point. Thus the level set + // function value of this vertex really is unequal to zero.) - subPolytope = NEW SubPolytope(elInfo, - intersecPts, - numIntersecPts, - 0); + subPolytope = NEW SubPolytope(elInfo, + intersecPts, + numIntersecPts, + 0); - elLS->setLevelSetDomain( - elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); + elLS->setLevelSetDomain( + elLS->getVertexPos(subPolytope->getSubElement(0)->getLambda(0))); - el_norm = calcSubPolNorm(elInfo, - subPolytope, - elNorm, - scalQuad); + el_norm = calcSubPolNorm(elInfo, + subPolytope, + elNorm, + scalQuad); - // Calculate integral on the other element part. - if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); - else - elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_EXTERIOR); + // Calculate integral on the other element part. + if (elLS->getLevelSetDomain() == ElementLevelSet::LEVEL_SET_EXTERIOR) + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_INTERIOR); + else + elLS->setLevelSetDomain(ElementLevelSet::LEVEL_SET_EXTERIOR); - elNorm->setQuadrature(q); - el_norm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); + elNorm->setQuadrature(q); + el_norm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - el_norm -= calcSubPolNorm(elInfo, - subPolytope, - elNorm, - scalQuad, - -1.0); + el_norm -= calcSubPolNorm(elInfo, + subPolytope, + elNorm, + scalQuad, + -1.0); - nrm += el_norm; + nrm += el_norm; - // Free data. - DELETE subPolytope; - } - else { - - // ------------------------------------------------------------------- - // Element is either completely in the domain with negative - // or positive level set function values. - // ------------------------------------------------------------------- + // Free data. + DELETE subPolytope; + } + else { - elLS->setLevelSetDomain(elStatus); + // ------------------------------------------------------------------- + // Element is either completely in the domain with negative + // or positive level set function values. + // ------------------------------------------------------------------- - elNorm->setQuadrature(q); - nrm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); - } + elLS->setLevelSetDomain(elStatus); - elInfo = stack.traverseNext(elInfo); + elNorm->setQuadrature(q); + nrm += elNorm->calcElNorm(elInfo, fabs(elInfo->getDet())); + } - } // end of: mesh traverse + elInfo = stack.traverseNext(elInfo); - DELETE scalQuad; + } // end of: mesh traverse - return nrm; -} + DELETE scalQuad; -double -CFE_NormAndErrorFcts::L1Norm_Analyt( - AbstractFunction<double, WorldVector<double> > *f, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::L1Norm_Analyt"); - - ElementL1Norm_Analyt *elNorm = NEW ElementL1Norm_Analyt(q, f); - int dim = elLS->getDim(); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET; - - double nrm; - switch(domainFlag) { - case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + return nrm; } - DELETE elNorm; + double + CFE_NormAndErrorFcts::L1Norm_Analyt( + AbstractFunction<double, WorldVector<double> > *f, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::L1Norm_Analyt"); + + ElementL1Norm_Analyt *elNorm = NEW ElementL1Norm_Analyt(q, f); + int dim = elLS->getDim(); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET; + + double nrm = 0.0; + switch(domainFlag) { + case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - return nrm; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::L2NormSquare_Analyt( - AbstractFunction<double, WorldVector<double> > *f, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::L2NormSquare_Analyt"); - - ElementL2Norm_Analyt *elNorm = NEW ElementL2Norm_Analyt(q, f); - int dim = elLS->getDim(); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET; - - double nrm; - switch(domainFlag) { - case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + return nrm; } - DELETE elNorm; + double + CFE_NormAndErrorFcts::L2NormSquare_Analyt( + AbstractFunction<double, WorldVector<double> > *f, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::L2NormSquare_Analyt"); + + ElementL2Norm_Analyt *elNorm = NEW ElementL2Norm_Analyt(q, f); + int dim = elLS->getDim(); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET; + + double nrm = 0.0; + switch(domainFlag) { + case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - return nrm; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::L2Norm_Analyt( - AbstractFunction<double, WorldVector<double> > *f, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - return sqrt(L2NormSquare_Analyt(f, elLS, domainFlag, deg, q)); -} + return nrm; + } -double -CFE_NormAndErrorFcts::H1NormSquare_Analyt( - AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::H1NormSquare_Analyt"); - - int dim = elLS->getDim(); - ElementH1Norm_Analyt *elNorm = NEW ElementH1Norm_Analyt(q, grd, dim); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET; - - double nrm; - switch(domainFlag) { - case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + double + CFE_NormAndErrorFcts::L2Norm_Analyt( + AbstractFunction<double, WorldVector<double> > *f, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + return sqrt(L2NormSquare_Analyt(f, elLS, domainFlag, deg, q)); } - DELETE elNorm; + double + CFE_NormAndErrorFcts::H1NormSquare_Analyt( + AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::H1NormSquare_Analyt"); + + int dim = elLS->getDim(); + ElementH1Norm_Analyt *elNorm = NEW ElementH1Norm_Analyt(q, grd, dim); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET; + + double nrm = 0.0; + switch(domainFlag) { + case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - return nrm; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::H1Norm_Analyt( - AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - return sqrt(H1NormSquare_Analyt(grd, elLS, domainFlag, deg, q)); -} + return nrm; + } -double -CFE_NormAndErrorFcts::L1Norm_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::L1Norm_DOF"); - - ElementL1Norm_DOF *elNorm = NEW ElementL1Norm_DOF(q, dof); - int dim = elLS->getDim(); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET; - - double nrm; - switch(domainFlag) { - case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + double + CFE_NormAndErrorFcts::H1Norm_Analyt( + AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + return sqrt(H1NormSquare_Analyt(grd, elLS, domainFlag, deg, q)); } - DELETE elNorm; + double + CFE_NormAndErrorFcts::L1Norm_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::L1Norm_DOF"); + + ElementL1Norm_DOF *elNorm = NEW ElementL1Norm_DOF(q, dof); + int dim = elLS->getDim(); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET; + + double nrm = 0.0; + switch(domainFlag) { + case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - return nrm; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::L2NormSquare_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::L2NormSquare_DOF"); - - ElementL2Norm_DOF *elNorm = NEW ElementL2Norm_DOF(q, dof); - int dim = elLS->getDim(); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET; - - double nrm; - switch(domainFlag) { - case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + return nrm; } - DELETE elNorm; + double + CFE_NormAndErrorFcts::L2NormSquare_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::L2NormSquare_DOF"); + + ElementL2Norm_DOF *elNorm = NEW ElementL2Norm_DOF(q, dof); + int dim = elLS->getDim(); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET; + + double nrm = 0.0; + switch(domainFlag) { + case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - return nrm; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::L2Norm_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - return sqrt(L2NormSquare_DOF(dof, elLS, domainFlag, deg, q)); -} + return nrm; + } -double -CFE_NormAndErrorFcts::H1NormSquare_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::H1NormSquare_DOF"); - - int dim = elLS->getDim(); - ElementH1Norm_DOF *elNorm = NEW ElementH1Norm_DOF(q, dof, dim); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET | - Mesh::FILL_GRD_LAMBDA; - - double nrm; - switch(domainFlag) { - case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + double + CFE_NormAndErrorFcts::L2Norm_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + return sqrt(L2NormSquare_DOF(dof, elLS, domainFlag, deg, q)); } - DELETE elNorm; + double + CFE_NormAndErrorFcts::H1NormSquare_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::H1NormSquare_DOF"); + + int dim = elLS->getDim(); + ElementH1Norm_DOF *elNorm = NEW ElementH1Norm_DOF(q, dof, dim); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET | + Mesh::FILL_GRD_LAMBDA; + + double nrm = 0.0; + switch(domainFlag) { + case -3: nrm = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: nrm = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: nrm = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: nrm = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: nrm = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - return nrm; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::H1Norm_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg, - Quadrature *q) -{ - return sqrt(H1NormSquare_DOF(dof, elLS, domainFlag, deg, q)); -} + return nrm; + } -double -CFE_NormAndErrorFcts::L2Err( - AbstractFunction<double, WorldVector<double> > *u, - DOFVector<double> *uh, - ElementLevelSet *elLS, - int domainFlag, - int relErr, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::L2Err()"); - - ElementL2Err *elNorm = NEW ElementL2Err(q, u, uh, relErr); - int dim = elLS->getDim(); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET; - - double err; - switch(domainFlag) { - case -3: err = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: err = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: err = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: err = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: err = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + double + CFE_NormAndErrorFcts::H1Norm_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg, + Quadrature *q) + { + return sqrt(H1NormSquare_DOF(dof, elLS, domainFlag, deg, q)); } - L2_err_abs = sqrt(err); - L2_u_norm = sqrt(elNorm->getNormU()); + double + CFE_NormAndErrorFcts::L2Err( + AbstractFunction<double, WorldVector<double> > *u, + DOFVector<double> *uh, + ElementLevelSet *elLS, + int domainFlag, + int relErr, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::L2Err()"); + + ElementL2Err *elNorm = NEW ElementL2Err(q, u, uh, relErr); + int dim = elLS->getDim(); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET; + + double err = 0.0; + switch(domainFlag) { + case -3: err = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: err = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: err = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: err = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: err = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - if (relErr) - err = L2_err_abs / (L2_u_norm + 1.e-15); - else - err = L2_err_abs; + L2_err_abs = sqrt(err); + L2_u_norm = sqrt(elNorm->getNormU()); - DELETE elNorm; + if (relErr) + err = L2_err_abs / (L2_u_norm + 1.e-15); + else + err = L2_err_abs; - return err; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::H1Err( - AbstractFunction<WorldVector<double>, WorldVector<double> > *u, - DOFVector<double> *uh, - ElementLevelSet *elLS, - int domainFlag, - int relErr, - int deg, - Quadrature *q) -{ - FUNCNAME("CFE_NormAndErrorFcts::H1Err()"); - - int dim = elLS->getDim(); - ElementH1Err *elNorm = NEW ElementH1Err(q, u, uh, relErr, dim); - - TEST_EXIT(dim == Global::getGeo(WORLD)) - ("doesn't work for dimension of problem != dimension of world!\n"); - - Flag fillFlag = Mesh::CALL_LEAF_EL | - Mesh::FILL_COORDS | - Mesh::FILL_DET | - Mesh::FILL_GRD_LAMBDA; - - double err; - switch(domainFlag) { - case -3: err = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); - break; - case -2: err = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); - break; - case -1: err = Norm_Int(elNorm, elLS, fillFlag, deg, q); - break; - case 0: err = Norm_Bound(elNorm, elLS, fillFlag, deg, q); - break; - case 1: err = Norm_Complete(elNorm, elLS, fillFlag, deg, q); - break; - default: ERROR_EXIT("illegal flag !\n"); - break; + return err; } - H1_err_abs = sqrt(err); - H1_u_norm = sqrt(elNorm->getNormGrdU()); + double + CFE_NormAndErrorFcts::H1Err( + AbstractFunction<WorldVector<double>, WorldVector<double> > *u, + DOFVector<double> *uh, + ElementLevelSet *elLS, + int domainFlag, + int relErr, + int deg, + Quadrature *q) + { + FUNCNAME("CFE_NormAndErrorFcts::H1Err()"); + + int dim = elLS->getDim(); + ElementH1Err *elNorm = NEW ElementH1Err(q, u, uh, relErr, dim); + + TEST_EXIT(dim == Global::getGeo(WORLD)) + ("doesn't work for dimension of problem != dimension of world!\n"); + + Flag fillFlag = Mesh::CALL_LEAF_EL | + Mesh::FILL_COORDS | + Mesh::FILL_DET | + Mesh::FILL_GRD_LAMBDA; + + double err = 0.0; + switch(domainFlag) { + case -3: err = Norm_IntNoBound(elNorm, elLS, fillFlag, deg, q); + break; + case -2: err = Norm_IntBound(elNorm, elLS, fillFlag, deg, q); + break; + case -1: err = Norm_Int(elNorm, elLS, fillFlag, deg, q); + break; + case 0: err = Norm_Bound(elNorm, elLS, fillFlag, deg, q); + break; + case 1: err = Norm_Complete(elNorm, elLS, fillFlag, deg, q); + break; + default: ERROR_EXIT("illegal flag !\n"); + break; + } - if (relErr) - err = H1_err_abs / (H1_u_norm + 1.e-15); - else - err = H1_err_abs; + H1_err_abs = sqrt(err); + H1_u_norm = sqrt(elNorm->getNormGrdU()); - DELETE elNorm; + if (relErr) + err = H1_err_abs / (H1_u_norm + 1.e-15); + else + err = H1_err_abs; - return err; -} + DELETE elNorm; -double -CFE_NormAndErrorFcts::calcSubPolNorm(ElInfo *elInfo, - SubPolytope *subPolytope, - ElementNorm *elNorm, - ScalableQuadrature *scalQuad, - const double &subPolFac) -{ - double nrm = 0.0; - - for (std::vector<SubElInfo *>::iterator it = - subPolytope->getSubElementsBegin(); - it != subPolytope->getSubElementsEnd(); - it++) { - - scalQuad->scaleQuadrature(**it); - elNorm->setQuadrature(scalQuad); + return err; + } + + double + CFE_NormAndErrorFcts::calcSubPolNorm(ElInfo *elInfo, + SubPolytope *subPolytope, + ElementNorm *elNorm, + ScalableQuadrature *scalQuad, + const double &subPolFac) + { + double nrm = 0.0; + + for (std::vector<SubElInfo *>::iterator it = + subPolytope->getSubElementsBegin(); + it != subPolytope->getSubElementsEnd(); + it++) { + + scalQuad->scaleQuadrature(**it); + elNorm->setQuadrature(scalQuad); - nrm += elNorm->calcElNorm(elInfo, - fabs((*it)->getDet()), - subPolFac); + nrm += elNorm->calcElNorm(elInfo, + fabs((*it)->getDet()), + subPolFac); + } + + return nrm; } - return nrm; } diff --git a/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.h b/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.h index 4363642422b33c14991b24c4ac0b5db65ec1f118..cd8c616e43d7a15739c9867ca2c27c93558e92bc 100644 --- a/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.h +++ b/AMDiS/compositeFEM/src/CFE_NormAndErrorFcts.h @@ -11,564 +11,566 @@ #include "ScalableQuadrature.h" #include "SubPolytope.h" -using namespace AMDiS; - -class ElementNorm -{ - public: - MEMORY_MANAGED(ElementNorm); - - /** - * Constructor. - */ - ElementNorm(Quadrature *q_) - : q(q_), - nQPts(0) +namespace AMDiS { + + class ElementNorm { - if (q) + public: + MEMORY_MANAGED(ElementNorm); + + /** + * Constructor. + */ + ElementNorm(Quadrature *q_) + : q(q_), + nQPts(0) + { + if (q) + nQPts = q->getNumPoints(); + }; + + /** + * Destructor. + */ + virtual ~ElementNorm() + {}; + + /** + * Calculates element norm on elInfo. + */ + virtual double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0) = 0; + + /** + * Sets quadrature to q_. + */ + inline void setQuadrature(Quadrature *q_) { + q = q_; nQPts = q->getNumPoints(); + }; + + protected: + /** + * Quadrature formula. + */ + Quadrature *q; + + /** + * Number of quadrature points. + */ + int nQPts; }; - /** - * Destructor. - */ - virtual ~ElementNorm() - {}; - - /** - * Calculates element norm on elInfo. - */ - virtual double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0) = 0; - - /** - * Sets quadrature to q_. - */ - inline void setQuadrature(Quadrature *q_) { - q = q_; - nQPts = q->getNumPoints(); + class ElementL1Norm_Analyt : public ElementNorm + { + public: + MEMORY_MANAGED(ElementL1Norm_Analyt); + + /** + * Constructor. + */ + ElementL1Norm_Analyt(Quadrature *q_, + AbstractFunction<double, WorldVector<double> > *f_) + : ElementNorm(q_), + f(f_) + {}; + + /** + * Calculates element norm on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + protected: + /** + * Abstract function for which norm is calculated. + */ + AbstractFunction<double, WorldVector<double> > *f; }; - protected: - /** - * Quadrature formula. - */ - Quadrature *q; - - /** - * Number of quadrature points. - */ - int nQPts; -}; - -class ElementL1Norm_Analyt : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementL1Norm_Analyt); - - /** - * Constructor. - */ - ElementL1Norm_Analyt(Quadrature *q_, - AbstractFunction<double, WorldVector<double> > *f_) - : ElementNorm(q_), - f(f_) - {}; - - /** - * Calculates element norm on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - protected: - /** - * Abstract function for which norm is calculated. - */ - AbstractFunction<double, WorldVector<double> > *f; -}; - -class ElementL2Norm_Analyt : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementL2Norm_Analyt); - - /** - * Constructor. - */ - ElementL2Norm_Analyt(Quadrature *q_, - AbstractFunction<double, WorldVector<double> > *f_) - : ElementNorm(q_), - f(f_) - {}; - - /** - * Calculates element norm on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - protected: - /** - * Abstract function for which norm is calculated. - */ - AbstractFunction<double, WorldVector<double> > *f; -}; - -class ElementH1Norm_Analyt : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementH1Norm_Analyt); - - /** - * Constructor. - */ - ElementH1Norm_Analyt(Quadrature *q_, - AbstractFunction<WorldVector<double>, WorldVector<double> > *grd_, - int dim_) - : ElementNorm(q_), - grd(grd_), - dim(dim_) - {}; - - /** - * Calculates element norm on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - protected: - /** - * Abstract function for which norm is calculated. - */ - AbstractFunction<WorldVector<double>, WorldVector<double> > *grd; - - /** - * Mesh dimension. - */ - int dim; -}; - -class ElementL1Norm_DOF : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementL1Norm_DOF); - - /** - * Constructor. - */ - ElementL1Norm_DOF(Quadrature *q_, DOFVector<double> *dofVec_) - : ElementNorm(q_), - dofVec(dofVec_) - {}; - - /** - * Calculates element norm on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - protected: - /** - * DOF vector for which norm is calculated. - */ - DOFVector<double> *dofVec; -}; - -class ElementL2Norm_DOF : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementL2Norm_DOF); - - /** - * Constructor. - */ - ElementL2Norm_DOF(Quadrature *q_, DOFVector<double> *dofVec_) - : ElementNorm(q_), - dofVec(dofVec_) - {}; - - /** - * Calculates element norm on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - protected: - /** - * DOF vector for which norm is calculated. - */ - DOFVector<double> *dofVec; -}; - -class ElementH1Norm_DOF : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementH1Norm_DOF); - - /** - * Constructor. - */ - ElementH1Norm_DOF(Quadrature *q_, DOFVector<double> *dofVec_, int dim_) - : ElementNorm(q_), - dofVec(dofVec_), - dim(dim_) - {}; - - /** - * Calculates element norm on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - protected: - /** - * DOF vector for which norm is calculated. - */ - DOFVector<double> *dofVec; - - /** - * Mesh dimension. - */ - int dim; -}; - -class ElementL2Err : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementL2Err); - - /** - * Constructor. - */ - ElementL2Err(Quadrature *q_, - AbstractFunction<double, WorldVector<double> > *u_, - DOFVector<double> *uh_, - int relErr_) - : ElementNorm(q_), - u(u_), - uh(uh_), - relErr(relErr_), - nrmU(0.0) - {}; - - /** - * Calculates element error on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - /** - * Get norm of u. - */ - inline double getNormU() const { - return nrmU; + class ElementL2Norm_Analyt : public ElementNorm + { + public: + MEMORY_MANAGED(ElementL2Norm_Analyt); + + /** + * Constructor. + */ + ElementL2Norm_Analyt(Quadrature *q_, + AbstractFunction<double, WorldVector<double> > *f_) + : ElementNorm(q_), + f(f_) + {}; + + /** + * Calculates element norm on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + protected: + /** + * Abstract function for which norm is calculated. + */ + AbstractFunction<double, WorldVector<double> > *f; }; - protected: - /** - * Abstract function for which error is calculated. - */ - AbstractFunction<double, WorldVector<double> > *u; - - /** - * DOF vector for which error is calculated. - */ - DOFVector<double> *uh; - - /** - * Indicates whether relative (1) or absolute error (0) is calculated. - */ - int relErr; - - /** - * Norm of u in case relative error is calculated. - */ - double nrmU; -}; - -class ElementH1Err : public ElementNorm -{ - public: - MEMORY_MANAGED(ElementH1Err); - - /** - * Constructor. - */ - ElementH1Err(Quadrature *q_, - AbstractFunction<WorldVector<double>, WorldVector<double> > *grdu_, - DOFVector<double> *uh_, - int relErr_, - int dim_) - : ElementNorm(q_), - grdu(grdu_), - uh(uh_), - relErr(relErr_), - nrmGrdU(0.0), - dim(dim_) - {}; - - /** - * Calculates element error on elInfo. - */ - double calcElNorm(ElInfo *elInfo, - const double &det, - const double &fac = 1.0); - - /** - * Get norm of grdu. - */ - inline double getNormGrdU() const { - return nrmGrdU; + + class ElementH1Norm_Analyt : public ElementNorm + { + public: + MEMORY_MANAGED(ElementH1Norm_Analyt); + + /** + * Constructor. + */ + ElementH1Norm_Analyt(Quadrature *q_, + AbstractFunction<WorldVector<double>, WorldVector<double> > *grd_, + int dim_) + : ElementNorm(q_), + grd(grd_), + dim(dim_) + {}; + + /** + * Calculates element norm on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + protected: + /** + * Abstract function for which norm is calculated. + */ + AbstractFunction<WorldVector<double>, WorldVector<double> > *grd; + + /** + * Mesh dimension. + */ + int dim; }; - protected: - /** - * Abstract function for which norm is calculated. - */ - AbstractFunction<WorldVector<double>, WorldVector<double> > *grdu; - - /** - * DOF vector for which error is calculated. - */ - DOFVector<double> *uh; - - /** - * Indicates whether relative (1) or absolute error (0) is calculated. - */ - int relErr; - - /** - * Norm of grdu in case relative error is calculated. - */ - double nrmGrdU; - - /** - * Mesh dimension. - */ - int dim; -}; - -///////////////////////////////////////////////////////////////////////////// -///// class CFE_NormAndErrorFcts //////////////////////////////////////////// -///////////////////////////////////////////////////////////////////////////// -class CFE_NormAndErrorFcts -{ - public: - MEMORY_MANAGED(CFE_NormAndErrorFcts); - - // ======================================================================== - // Calculation of L1-Norm, L2-Norm and H1-Norm on domain depending - // on the level set function. - // - // Here, the H1-norm is the H1-seminorm, i.e. you get the "common" - // H1-norm by - // H1_Norm() = sqrt(L2_Norm^2() + H1_Seminorm^2()) . - // - // Parameters for domainFlag: - // -3: all elements in the domain with negative level set function - // values which do not intersect the zero level set - // -2 : all elements which intersect the domain with negative level set - // function values, in particular all (complete) elements which - // cut the zero level set - // -1 : domain with negative level set function values - // 0 : all elements cut by the zero level set - // 1 : complete mesh - // ======================================================================== - static double L1Norm_Analyt( - AbstractFunction<double, WorldVector<double> > *f, - ElementLevelSet *elLS, - int domainFlag, - int deg = 1, - Quadrature* q = NULL); - static double L2Norm_Analyt( - AbstractFunction<double, WorldVector<double> > *f, - ElementLevelSet *elLS, - int domainFlag, - int deg = 2, - Quadrature* q = NULL); - static double L2NormSquare_Analyt( - AbstractFunction<double, WorldVector<double> > *f, - ElementLevelSet *elLS, - int domainFlag, - int deg = 2, - Quadrature* q = NULL); - static double H1Norm_Analyt( - AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, - ElementLevelSet *elLS, - int domainFlag, - int deg = 0, - Quadrature* q = NULL); - static double H1NormSquare_Analyt( - AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, - ElementLevelSet *elLS, - int domainFlag, - int deg = 0, - Quadrature* q = NULL); - static double L1Norm_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg = 1, - Quadrature* q = NULL); - static double L2Norm_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg = 2, - Quadrature* q = NULL); - static double L2NormSquare_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg = 2, - Quadrature* q = NULL); - static double H1Norm_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg = 0, - Quadrature* q = NULL); - static double H1NormSquare_DOF(DOFVector<double> *dof, - ElementLevelSet *elLS, - int domainFlag, - int deg = 0, - Quadrature* q = NULL); - - // ======================================================================== - // Calculation of error between - // -> true solution (analytically given) and - // -> FE solution (dof vector). - // - // Here, the H1-norm is the H1-seminorm, i.e. you get the "common" - // H1-norm by - // H1_Norm() = sqrt(L2_Norm^2() + H1_Seminorm^2()) . - // - // Parameter \ref domainFlag: - // -3: all elements in the domain with negative level set function - // values which do not intersect the zero level set - // -2 : all elements which intersect the domain with negative level set - // function values, in particular all (complete) elements which - // cut the zero level set - // -1 : domain with negative level set function values - // 0 : all elements cut by the zero level set - // 1 : complete mesh - // ======================================================================== - static double L2Err(AbstractFunction<double, WorldVector<double> > *u, - DOFVector<double> *uh, - ElementLevelSet *elLS, - int domainFlag, - int relErr = 0, - int deg = 2, - Quadrature *q = NULL); - static double H1Err( - AbstractFunction<WorldVector<double>, WorldVector<double> > *grdU, - DOFVector<double> *uh, - ElementLevelSet *elLS, - int domainFlag, - int relErr = 0, - int deg = 0, - Quadrature *q = NULL); - - /** - * Get absolute L2 error. - * (If relative L2 error is calculated, the absolute L2 error is also - * calculated and stored in L2_err_abs). - */ - inline static double getL2ErrAbs() + class ElementL1Norm_DOF : public ElementNorm { - return L2_err_abs; - } - - /** - * Get absolute H1 error. - * (If relative H1 error is calculated, the absolute H1 error is also - * calculated and stored in H1_err_abs). - */ - inline static double getH1ErrAbs() + public: + MEMORY_MANAGED(ElementL1Norm_DOF); + + /** + * Constructor. + */ + ElementL1Norm_DOF(Quadrature *q_, DOFVector<double> *dofVec_) + : ElementNorm(q_), + dofVec(dofVec_) + {}; + + /** + * Calculates element norm on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + protected: + /** + * DOF vector for which norm is calculated. + */ + DOFVector<double> *dofVec; + }; + + class ElementL2Norm_DOF : public ElementNorm { - return H1_err_abs; - } - - /** - * Get L2 norm of solution u. - * (If relative L2 error is calculated, the L2 norm of the solution u is - * also calculated and stored in L2_u_norm). - */ - inline static double getL2_U_Norm() + public: + MEMORY_MANAGED(ElementL2Norm_DOF); + + /** + * Constructor. + */ + ElementL2Norm_DOF(Quadrature *q_, DOFVector<double> *dofVec_) + : ElementNorm(q_), + dofVec(dofVec_) + {}; + + /** + * Calculates element norm on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + protected: + /** + * DOF vector for which norm is calculated. + */ + DOFVector<double> *dofVec; + }; + + class ElementH1Norm_DOF : public ElementNorm { - return L2_u_norm; - } - - /** - * Get H1 norm of solution u. - * (If relative H1 error is calculated, the H1 norm of the solution u is - * also calculated and stored in H1_u_norm). - */ - inline static double getH1_U_Norm() + public: + MEMORY_MANAGED(ElementH1Norm_DOF); + + /** + * Constructor. + */ + ElementH1Norm_DOF(Quadrature *q_, DOFVector<double> *dofVec_, int dim_) + : ElementNorm(q_), + dofVec(dofVec_), + dim(dim_) + {}; + + /** + * Calculates element norm on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + protected: + /** + * DOF vector for which norm is calculated. + */ + DOFVector<double> *dofVec; + + /** + * Mesh dimension. + */ + int dim; + }; + + class ElementL2Err : public ElementNorm { - return H1_u_norm; - } + public: + MEMORY_MANAGED(ElementL2Err); + + /** + * Constructor. + */ + ElementL2Err(Quadrature *q_, + AbstractFunction<double, WorldVector<double> > *u_, + DOFVector<double> *uh_, + int relErr_) + : ElementNorm(q_), + u(u_), + uh(uh_), + relErr(relErr_), + nrmU(0.0) + {}; + + /** + * Calculates element error on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + /** + * Get norm of u. + */ + inline double getNormU() const { + return nrmU; + }; + protected: + /** + * Abstract function for which error is calculated. + */ + AbstractFunction<double, WorldVector<double> > *u; + + /** + * DOF vector for which error is calculated. + */ + DOFVector<double> *uh; + + /** + * Indicates whether relative (1) or absolute error (0) is calculated. + */ + int relErr; + + /** + * Norm of u in case relative error is calculated. + */ + double nrmU; + }; -protected: - static double Norm_IntNoBound(ElementNorm *elNorm, + class ElementH1Err : public ElementNorm + { + public: + MEMORY_MANAGED(ElementH1Err); + + /** + * Constructor. + */ + ElementH1Err(Quadrature *q_, + AbstractFunction<WorldVector<double>, WorldVector<double> > *grdu_, + DOFVector<double> *uh_, + int relErr_, + int dim_) + : ElementNorm(q_), + grdu(grdu_), + uh(uh_), + relErr(relErr_), + nrmGrdU(0.0), + dim(dim_) + {}; + + /** + * Calculates element error on elInfo. + */ + double calcElNorm(ElInfo *elInfo, + const double &det, + const double &fac = 1.0); + + /** + * Get norm of grdu. + */ + inline double getNormGrdU() const { + return nrmGrdU; + }; + + protected: + /** + * Abstract function for which norm is calculated. + */ + AbstractFunction<WorldVector<double>, WorldVector<double> > *grdu; + + /** + * DOF vector for which error is calculated. + */ + DOFVector<double> *uh; + + /** + * Indicates whether relative (1) or absolute error (0) is calculated. + */ + int relErr; + + /** + * Norm of grdu in case relative error is calculated. + */ + double nrmGrdU; + + /** + * Mesh dimension. + */ + int dim; + }; + + ///////////////////////////////////////////////////////////////////////////// + ///// class CFE_NormAndErrorFcts //////////////////////////////////////////// + ///////////////////////////////////////////////////////////////////////////// + class CFE_NormAndErrorFcts + { + public: + MEMORY_MANAGED(CFE_NormAndErrorFcts); + + // ======================================================================== + // Calculation of L1-Norm, L2-Norm and H1-Norm on domain depending + // on the level set function. + // + // Here, the H1-norm is the H1-seminorm, i.e. you get the "common" + // H1-norm by + // H1_Norm() = sqrt(L2_Norm^2() + H1_Seminorm^2()) . + // + // Parameters for domainFlag: + // -3: all elements in the domain with negative level set function + // values which do not intersect the zero level set + // -2 : all elements which intersect the domain with negative level set + // function values, in particular all (complete) elements which + // cut the zero level set + // -1 : domain with negative level set function values + // 0 : all elements cut by the zero level set + // 1 : complete mesh + // ======================================================================== + static double L1Norm_Analyt( + AbstractFunction<double, WorldVector<double> > *f, + ElementLevelSet *elLS, + int domainFlag, + int deg = 1, + Quadrature* q = NULL); + static double L2Norm_Analyt( + AbstractFunction<double, WorldVector<double> > *f, + ElementLevelSet *elLS, + int domainFlag, + int deg = 2, + Quadrature* q = NULL); + static double L2NormSquare_Analyt( + AbstractFunction<double, WorldVector<double> > *f, + ElementLevelSet *elLS, + int domainFlag, + int deg = 2, + Quadrature* q = NULL); + static double H1Norm_Analyt( + AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, + ElementLevelSet *elLS, + int domainFlag, + int deg = 0, + Quadrature* q = NULL); + static double H1NormSquare_Analyt( + AbstractFunction<WorldVector<double>, WorldVector<double> > *grd, + ElementLevelSet *elLS, + int domainFlag, + int deg = 0, + Quadrature* q = NULL); + static double L1Norm_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg = 1, + Quadrature* q = NULL); + static double L2Norm_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg = 2, + Quadrature* q = NULL); + static double L2NormSquare_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg = 2, + Quadrature* q = NULL); + static double H1Norm_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg = 0, + Quadrature* q = NULL); + static double H1NormSquare_DOF(DOFVector<double> *dof, + ElementLevelSet *elLS, + int domainFlag, + int deg = 0, + Quadrature* q = NULL); + + // ======================================================================== + // Calculation of error between + // -> true solution (analytically given) and + // -> FE solution (dof vector). + // + // Here, the H1-norm is the H1-seminorm, i.e. you get the "common" + // H1-norm by + // H1_Norm() = sqrt(L2_Norm^2() + H1_Seminorm^2()) . + // + // Parameter \ref domainFlag: + // -3: all elements in the domain with negative level set function + // values which do not intersect the zero level set + // -2 : all elements which intersect the domain with negative level set + // function values, in particular all (complete) elements which + // cut the zero level set + // -1 : domain with negative level set function values + // 0 : all elements cut by the zero level set + // 1 : complete mesh + // ======================================================================== + static double L2Err(AbstractFunction<double, WorldVector<double> > *u, + DOFVector<double> *uh, + ElementLevelSet *elLS, + int domainFlag, + int relErr = 0, + int deg = 2, + Quadrature *q = NULL); + static double H1Err( + AbstractFunction<WorldVector<double>, WorldVector<double> > *grdU, + DOFVector<double> *uh, + ElementLevelSet *elLS, + int domainFlag, + int relErr = 0, + int deg = 0, + Quadrature *q = NULL); + + /** + * Get absolute L2 error. + * (If relative L2 error is calculated, the absolute L2 error is also + * calculated and stored in L2_err_abs). + */ + inline static double getL2ErrAbs() + { + return L2_err_abs; + } + + /** + * Get absolute H1 error. + * (If relative H1 error is calculated, the absolute H1 error is also + * calculated and stored in H1_err_abs). + */ + inline static double getH1ErrAbs() + { + return H1_err_abs; + } + + /** + * Get L2 norm of solution u. + * (If relative L2 error is calculated, the L2 norm of the solution u is + * also calculated and stored in L2_u_norm). + */ + inline static double getL2_U_Norm() + { + return L2_u_norm; + } + + /** + * Get H1 norm of solution u. + * (If relative H1 error is calculated, the H1 norm of the solution u is + * also calculated and stored in H1_u_norm). + */ + inline static double getH1_U_Norm() + { + return H1_u_norm; + } + + protected: + static double Norm_IntNoBound(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature* q); + static double Norm_IntBound(ElementNorm *elNorm, ElementLevelSet *elLS, Flag fillFlag, int deg, Quadrature* q); - static double Norm_IntBound(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature* q); - static double Norm_Int(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature* q); - static double Norm_Bound(ElementNorm *elNorm, + static double Norm_Int(ElementNorm *elNorm, ElementLevelSet *elLS, Flag fillFlag, int deg, Quadrature* q); - static double Norm_Complete(ElementNorm *elNorm, - ElementLevelSet *elLS, - Flag fillFlag, - int deg, - Quadrature* q); - - /** - * Calculate norm on subpolytope. - */ - static double calcSubPolNorm(ElInfo *elInfo, - SubPolytope *subPolytope, - ElementNorm *elNorm, - ScalableQuadrature *scalQuad, - const double &subPolFac = 1.0); - - protected: - /** - * Absolute L2 error (last L2 error calculation !). - */ - static double L2_err_abs; - - /** - * L2 norm of correct solution u (last L2 error calculation !). - */ - static double L2_u_norm; - - /** - * Absolute H1 error (last H1 error calculation !). - */ - static double H1_err_abs; - - /** - * H1 norm of correct solution u (last H1 error calculation !). - */ - static double H1_u_norm; -}; + static double Norm_Bound(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature* q); + static double Norm_Complete(ElementNorm *elNorm, + ElementLevelSet *elLS, + Flag fillFlag, + int deg, + Quadrature* q); + + /** + * Calculate norm on subpolytope. + */ + static double calcSubPolNorm(ElInfo *elInfo, + SubPolytope *subPolytope, + ElementNorm *elNorm, + ScalableQuadrature *scalQuad, + const double &subPolFac = 1.0); + + protected: + /** + * Absolute L2 error (last L2 error calculation !). + */ + static double L2_err_abs; + + /** + * L2 norm of correct solution u (last L2 error calculation !). + */ + static double L2_u_norm; + + /** + * Absolute H1 error (last H1 error calculation !). + */ + static double H1_err_abs; + + /** + * H1 norm of correct solution u (last H1 error calculation !). + */ + static double H1_u_norm; + }; + +} #endif // AMDIS_CFE_NORMANDERRORFCTS_H diff --git a/AMDiS/compositeFEM/src/ScalableQuadrature.cc b/AMDiS/compositeFEM/src/ScalableQuadrature.cc index 38e31970ba105b45905cc4dbdd8974a27fe7d7ee..6db04c06df65cd80982a760cd5706e6c495a32b3 100644 --- a/AMDiS/compositeFEM/src/ScalableQuadrature.cc +++ b/AMDiS/compositeFEM/src/ScalableQuadrature.cc @@ -1,56 +1,55 @@ #include "ScalableQuadrature.h" #include "SubElInfo.h" -ScalableQuadrature::ScalableQuadrature(Quadrature *quadrature) - : Quadrature(*quadrature) -{ - /** - * Change name of quadrature. - */ - name = "Scalable" + getName(); - - /** - * copy quadrature->lambda to oldLambda - */ - oldLambda = NEW VectorOfFixVecs<DimVec<double> >(*(quadrature->getLambda())); -} +namespace AMDiS { + + ScalableQuadrature::ScalableQuadrature(Quadrature *quadrature) + : Quadrature(*quadrature) + { + /** + * Change name of quadrature. + */ + name = "Scalable" + getName(); + + /** + * copy quadrature->lambda to oldLambda + */ + oldLambda = NEW VectorOfFixVecs<DimVec<double> >(*(quadrature->getLambda())); + } -void -ScalableQuadrature::scaleQuadrature(const SubElInfo& subElInfo) -{ - //****************************************************************************** - // Manipulates the quadrature points for the assemblage of a subelement. - // A quadrature point for the assemblage of the subelement is then given in - // barycentric coordinates with respect to the element containing the - // subelement. - // Thus the assemblage of the subelement is done by assembling the element - // using the quadrature with manipulated quadrature points. - // Note: The result must be corrected by the determinant of the subelement !!! - //****************************************************************************** - int iq, i, j; - double l; - - /** - * If (l_0, l_1, l_2) is the old quadrature point and x_0, x_1, x_2 are the - * barycentric coordinates of the vertices of the subelement, the new quadrature - * point (n_0, n_1, n_2) is given as follows: - * (n_0, n_1, n_2) = l_0 * x_0 + l_1 * x_1 + l_2 * x_2 . - */ - for (iq = 0; iq < n_points; iq++) { - - for (i = 0; i <= dim; i++) { - - /** - * Calculate the i-th component of the iq-th new quadrature point. - */ - l = 0.0; - - for (j = 0; j <= dim; j++) { - l += getOldLambda(iq, j) * subElInfo.getLambda(j, i); + void ScalableQuadrature::scaleQuadrature(const SubElInfo& subElInfo) + { + //****************************************************************************** + // Manipulates the quadrature points for the assemblage of a subelement. + // A quadrature point for the assemblage of the subelement is then given in + // barycentric coordinates with respect to the element containing the + // subelement. + // Thus the assemblage of the subelement is done by assembling the element + // using the quadrature with manipulated quadrature points. + // Note: The result must be corrected by the determinant of the subelement !!! + //****************************************************************************** + + /** + * If (l_0, l_1, l_2) is the old quadrature point and x_0, x_1, x_2 are the + * barycentric coordinates of the vertices of the subelement, the new quadrature + * point (n_0, n_1, n_2) is given as follows: + * (n_0, n_1, n_2) = l_0 * x_0 + l_1 * x_1 + l_2 * x_2 . + */ + for (int iq = 0; iq < n_points; iq++) { + + for (int i = 0; i <= dim; i++) { + + /** + * Calculate the i-th component of the iq-th new quadrature point. + */ + double l = 0.0; + + for (int j = 0; j <= dim; j++) { + l += getOldLambda(iq, j) * subElInfo.getLambda(j, i); + } + + (*lambda)[iq][i] = l; } - - (*lambda)[iq][i] = l; } } } - diff --git a/AMDiS/compositeFEM/src/ScalableQuadrature.h b/AMDiS/compositeFEM/src/ScalableQuadrature.h index 4f1fea012f55497d42c86bfae7380b91f1b31c99..7797f6b52272bc88ca64da4827d0b3e46b7fe666 100644 --- a/AMDiS/compositeFEM/src/ScalableQuadrature.h +++ b/AMDiS/compositeFEM/src/ScalableQuadrature.h @@ -7,76 +7,78 @@ #include "Quadrature.h" #include "FixVec.h" -class SubElInfo; +namespace AMDiS { -using namespace AMDiS; -using namespace std; + class SubElInfo; -// =============================================================================== -// ===== class ScalableQuadrature ================================================ -// =============================================================================== -// -// Class Description: -// The class \ref ScalableQuadrature holds the functionality for the manipulation -// of a quadrature formula used for the integration on subelements. -// If S' is a sublement and S the element containing S', the numerical integration -// on S' is done by integration on the element S with a manipulated quadrature -// formula and multiplication of the result with a correction term consisting of -// the determinants corresponding to S and S'. That means, the quadrature points -// are manipulated in the following way: -// The original quadrature formula holds quadrature points which are given in -// barycentric coordinates with respect to S'. Now we express these quadrature -// points in barycentric coordinates with respect to S and obtain the manipulated -// quadrature points we need. Obviously, the corresponding quadrature points -// in world coordinates coincide. Thus the numerical integration on S with the -// manipulated quadrature formula gives us the same result as the numerical -// integration on S' with the original quadrature formula up to the determinant. -// This method for integration on subelements allows the reuse of the routines for -// the integration on elements. -// -// Main routines: -// ScalableQuadrature() - Create a new quadrature formula which is a copy of the -// original quadrature formula and store the original -// quadrature points in \ref oldLambda. -// scaleQuadrature() - Manipulate the original quadrature formula for a -// subelement. -// =============================================================================== -class ScalableQuadrature : public Quadrature -{ -public: - MEMORY_MANAGED(ScalableQuadrature); + // =============================================================================== + // ===== class ScalableQuadrature ================================================ + // =============================================================================== + // + // Class Description: + // The class \ref ScalableQuadrature holds the functionality for the manipulation + // of a quadrature formula used for the integration on subelements. + // If S' is a sublement and S the element containing S', the numerical integration + // on S' is done by integration on the element S with a manipulated quadrature + // formula and multiplication of the result with a correction term consisting of + // the determinants corresponding to S and S'. That means, the quadrature points + // are manipulated in the following way: + // The original quadrature formula holds quadrature points which are given in + // barycentric coordinates with respect to S'. Now we express these quadrature + // points in barycentric coordinates with respect to S and obtain the manipulated + // quadrature points we need. Obviously, the corresponding quadrature points + // in world coordinates coincide. Thus the numerical integration on S with the + // manipulated quadrature formula gives us the same result as the numerical + // integration on S' with the original quadrature formula up to the determinant. + // This method for integration on subelements allows the reuse of the routines for + // the integration on elements. + // + // Main routines: + // ScalableQuadrature() - Create a new quadrature formula which is a copy of the + // original quadrature formula and store the original + // quadrature points in \ref oldLambda. + // scaleQuadrature() - Manipulate the original quadrature formula for a + // subelement. + // =============================================================================== + class ScalableQuadrature : public Quadrature + { + public: + MEMORY_MANAGED(ScalableQuadrature); - /** - * Constructor - */ - ScalableQuadrature(Quadrature *quadrature); + /** + * Constructor + */ + ScalableQuadrature(Quadrature *quadrature); - /** - * Destructor - */ - ~ScalableQuadrature() - { - DELETE oldLambda; - } + /** + * Destructor + */ + ~ScalableQuadrature() { + DELETE oldLambda; + } - /** - * Manipulates the quadrature points for the assemblage of a subelement. - */ - void scaleQuadrature(const SubElInfo& subElInfo); + /** + * Manipulates the quadrature points for the assemblage of a subelement. + */ + void scaleQuadrature(const SubElInfo& subElInfo); + + /** + * Get b-th coordinate of the a-th original quadrature point. + */ + inline const double getOldLambda(int a, int b) const { + if (oldLambda) + return (*oldLambda)[a][b]; + else + return 0.0; + }; - /** - * Get b-th coordinate of the a-th original quadrature point. - */ - inline const double getOldLambda(int a,int b) const { - if (oldLambda) return (*oldLambda)[a][b]; - else return 0.0; - }; + protected: + /** + * Original quadrature points. + */ + VectorOfFixVecs<DimVec<double> > *oldLambda; + }; -protected: - /** - * Original quadrature points. - */ - VectorOfFixVecs<DimVec<double> > *oldLambda; -}; +} #endif // AMDIS_SCALABLEQUADRATURE_H diff --git a/AMDiS/compositeFEM/src/SubElInfo.cc b/AMDiS/compositeFEM/src/SubElInfo.cc index 876ed8a4fcf80c2a59e7387d9d993f1f780bed54..d0056c3fe3df8607cdd97d93702d7e83cc1200a9 100644 --- a/AMDiS/compositeFEM/src/SubElInfo.cc +++ b/AMDiS/compositeFEM/src/SubElInfo.cc @@ -2,34 +2,37 @@ #include "ElInfo.h" #include "Mesh.h" -SubElInfo::SubElInfo(VectorOfFixVecs<DimVec<double> > *lambda_, - const ElInfo *elInfo_) - : elInfo(elInfo_) -{ - FUNCNAME("SubElInfo::SubElInfo"); +namespace AMDiS { - int numPoints = lambda_->getSize(); - int dim = elInfo_->getMesh()->getDim(); - int i; + SubElInfo::SubElInfo(VectorOfFixVecs<DimVec<double> > *lambda_, + const ElInfo *elInfo_) + : elInfo(elInfo_) + { + FUNCNAME("SubElInfo::SubElInfo"); - TEST_EXIT(numPoints == dim+1)("invalid number of vertices of subelement\n"); + int nPoints = lambda_->getSize(); + int dim = elInfo_->getMesh()->getDim(); - FixVec<WorldVector<double>, VERTEX> worldCoords(dim, NO_INIT); + TEST_EXIT(nPoints == dim + 1) + ("invalid number of vertices of subelement\n"); - lambda = NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); - for (i = 0; i <= dim; i++) { - (*lambda)[i] = (*lambda_)[i]; - } + FixVec<WorldVector<double>, VERTEX> worldCoords(dim, NO_INIT); - /** - * Get worldcoordinates of the vertices of subelement in order to - * calculate the corresponding determinant. - */ - for (i = 0; i < numPoints; i++) { - elInfo->coordToWorld((const DimVec<double>)((*lambda)[i]), - &(worldCoords[i])); - } + lambda = NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); + for (int i = 0; i <= dim; i++) { + (*lambda)[i] = (*lambda_)[i]; + } - det = ElInfo::calcDet(worldCoords); -} + /** + * Get worldcoordinates of the vertices of subelement in order to + * calculate the corresponding determinant. + */ + for (int i = 0; i < nPoints; i++) { + elInfo->coordToWorld((const DimVec<double>)((*lambda)[i]), + &(worldCoords[i])); + } + det = ElInfo::calcDet(worldCoords); + } + +} diff --git a/AMDiS/compositeFEM/src/SubElInfo.h b/AMDiS/compositeFEM/src/SubElInfo.h index acacdf360b1536a5a00e40c774b450eebc588d67..dd9706e49dc897e095b84256b6fe481b59be015d 100644 --- a/AMDiS/compositeFEM/src/SubElInfo.h +++ b/AMDiS/compositeFEM/src/SubElInfo.h @@ -7,92 +7,91 @@ #include "FixVec.h" namespace AMDiS { - class ElInfo; -} + class ElInfo; -using namespace AMDiS; -using namespace std; + // ============================================================================ + // ===== class SubElInfo ====================================================== + // ============================================================================ + // + // Class description: + // The class \ref SubElInfo holds all information on a subelement (element to + // which it belongs, its vertices in barycentric coordinates with respect to + // the element, corresponding determinant, ...). + // + // Main routines: + // SubElInfo() - Creates a \ref SubElInfo for a subelement of the element + // \ref elInfo. The vertices of the subelement given in + // barycentric coordinates with respect to element are handed over + // to this routine. The determinant corresponding to subelement + // is calculated. + // ============================================================================ + class SubElInfo + { + public: + MEMORY_MANAGED(SubElInfo); -// ============================================================================ -// ===== class SubElInfo ====================================================== -// ============================================================================ -// -// Class description: -// The class \ref SubElInfo holds all information on a subelement (element to -// which it belongs, its vertices in barycentric coordinates with respect to -// the element, corresponding determinant, ...). -// -// Main routines: -// SubElInfo() - Creates a \ref SubElInfo for a subelement of the element -// \ref elInfo. The vertices of the subelement given in -// barycentric coordinates with respect to element are handed over -// to this routine. The determinant corresponding to subelement -// is calculated. -// ============================================================================ -class SubElInfo -{ -public: - MEMORY_MANAGED(SubElInfo); + /** + * Constructor + */ + SubElInfo(VectorOfFixVecs<DimVec<double> > *lambda_, + const ElInfo *elInfo_); - /** - * Constructor - */ - SubElInfo(VectorOfFixVecs<DimVec<double> > *lambda_, - const ElInfo *elInfo_); + /** + * Destructor. + */ + ~SubElInfo() { + DELETE lambda; + }; - /** - * Destructor. - */ - ~SubElInfo() - { - DELETE lambda; - }; - /** - * Get b-th coordinate of the a-th vertex of subelement (barycentric - * coordinates). - */ - inline const double getLambda(int a,int b) const { - if (lambda) return (*lambda)[a][b]; - else return 0.0; - }; + /** + * Get b-th coordinate of the a-th vertex of subelement (barycentric + * coordinates). + */ + inline const double getLambda(int a,int b) const { + if (lambda) + return (*lambda)[a][b]; + else + return 0.0; + }; - /** - * Get coordinates of a-th vertex of subelement (barycentric coordinates). - */ - inline const DimVec<double>& getLambda(int a) const { - return (*lambda)[a]; - }; + /** + * Get coordinates of a-th vertex of subelement (barycentric coordinates). + */ + inline const DimVec<double>& getLambda(int a) const { + return (*lambda)[a]; + }; - /** - * Get coordinates of all vertices of subelement (barycentric coordinates). - */ - inline VectorOfFixVecs<DimVec<double> > *getLambda() const { - return lambda; - }; + /** + * Get coordinates of all vertices of subelement (barycentric coordinates). + */ + inline VectorOfFixVecs<DimVec<double> > *getLambda() const { + return lambda; + }; - /** - * Get determinant corresponding to subelement. - */ - inline const double getDet() const { - return det; - }; + /** + * Get determinant corresponding to subelement. + */ + inline const double getDet() const { + return det; + }; -protected: + protected: - /** - * Contains elInfo of the element that contains subelement. - */ - const ElInfo *elInfo; + /** + * Contains elInfo of the element that contains subelement. + */ + const ElInfo *elInfo; - /** - * Barycentrc coordinates of the vertices of subelement. - */ - VectorOfFixVecs<DimVec<double> > *lambda; + /** + * Barycentrc coordinates of the vertices of subelement. + */ + VectorOfFixVecs<DimVec<double> > *lambda; - /** - * Determinant corresponding to the (World-)subelement. - */ - double det; -}; + /** + * Determinant corresponding to the (World-)subelement. + */ + double det; + }; +} #endif // AMDIS_SUBELINFO_H diff --git a/AMDiS/compositeFEM/src/SubElementAssembler.cc b/AMDiS/compositeFEM/src/SubElementAssembler.cc index 810d45230146f2987d16fcc1bfc8ed143d75214a..883f8c47885e96dbd309ff200e7fd0963c2aed3a 100644 --- a/AMDiS/compositeFEM/src/SubElementAssembler.cc +++ b/AMDiS/compositeFEM/src/SubElementAssembler.cc @@ -5,195 +5,184 @@ #include "ScalableQuadrature.h" #include "SubPolytope.h" -SubElementAssembler::SubElementAssembler(Operator *op, - const FiniteElemSpace *rowFESpace_, - const FiniteElemSpace *colFESpace_) - : StandardAssembler(op, NULL, NULL, NULL, NULL, rowFESpace_, colFESpace_) -{ - /** - * Create a scalable quadrature for subassembler and replace the original - * quadrature of the subassembler with the scalable quadrature. - */ - - if (zeroOrderAssembler) { - checkQuadratures(); - zeroOrderScalableQuadrature = - NEW ScalableQuadrature(zeroOrderAssembler->getQuadrature()); - zeroOrderAssembler->setQuadrature(zeroOrderScalableQuadrature); - } - else { - zeroOrderScalableQuadrature = NULL; - } +namespace AMDiS { + + SubElementAssembler::SubElementAssembler(Operator *op, + const FiniteElemSpace *rowFESpace_, + const FiniteElemSpace *colFESpace_) + : StandardAssembler(op, NULL, NULL, NULL, NULL, rowFESpace_, colFESpace_) + { + /** + * Create a scalable quadrature for subassembler and replace the original + * quadrature of the subassembler with the scalable quadrature. + */ - if (firstOrderAssemblerGrdPsi) { - checkQuadratures(); - firstOrderGrdPsiScalableQuadrature = - NEW ScalableQuadrature(firstOrderAssemblerGrdPsi->getQuadrature()); - firstOrderAssemblerGrdPsi->setQuadrature(firstOrderGrdPsiScalableQuadrature); - } - else { - firstOrderGrdPsiScalableQuadrature = NULL; - } + if (zeroOrderAssembler) { + checkQuadratures(); + zeroOrderScalableQuadrature = + NEW ScalableQuadrature(zeroOrderAssembler->getQuadrature()); + zeroOrderAssembler->setQuadrature(zeroOrderScalableQuadrature); + } else { + zeroOrderScalableQuadrature = NULL; + } - if (firstOrderAssemblerGrdPhi) { - checkQuadratures(); - firstOrderGrdPhiScalableQuadrature = - NEW ScalableQuadrature(firstOrderAssemblerGrdPhi->getQuadrature()); - firstOrderAssemblerGrdPhi->setQuadrature(firstOrderGrdPhiScalableQuadrature); - } - else { - firstOrderGrdPhiScalableQuadrature = NULL; - } + if (firstOrderAssemblerGrdPsi) { + checkQuadratures(); + firstOrderGrdPsiScalableQuadrature = + NEW ScalableQuadrature(firstOrderAssemblerGrdPsi->getQuadrature()); + firstOrderAssemblerGrdPsi->setQuadrature(firstOrderGrdPsiScalableQuadrature); + } else { + firstOrderGrdPsiScalableQuadrature = NULL; + } - if (secondOrderAssembler) { - checkQuadratures(); - secondOrderScalableQuadrature = - NEW ScalableQuadrature(secondOrderAssembler->getQuadrature()); - secondOrderAssembler->setQuadrature(secondOrderScalableQuadrature); - } - else { - secondOrderScalableQuadrature = NULL; - } -} + if (firstOrderAssemblerGrdPhi) { + checkQuadratures(); + firstOrderGrdPhiScalableQuadrature = + NEW ScalableQuadrature(firstOrderAssemblerGrdPhi->getQuadrature()); + firstOrderAssemblerGrdPhi->setQuadrature(firstOrderGrdPhiScalableQuadrature); + } else { + firstOrderGrdPhiScalableQuadrature = NULL; + } -void -SubElementAssembler::scaleQuadratures(const SubElInfo& subElInfo) -{ - if (zeroOrderAssembler) { - zeroOrderScalableQuadrature->scaleQuadrature(subElInfo); - } - if (firstOrderAssemblerGrdPsi) { - firstOrderGrdPsiScalableQuadrature->scaleQuadrature(subElInfo); - } - if (firstOrderAssemblerGrdPhi) { - firstOrderGrdPhiScalableQuadrature->scaleQuadrature(subElInfo); + if (secondOrderAssembler) { + checkQuadratures(); + secondOrderScalableQuadrature = + NEW ScalableQuadrature(secondOrderAssembler->getQuadrature()); + secondOrderAssembler->setQuadrature(secondOrderScalableQuadrature); + } else { + secondOrderScalableQuadrature = NULL; + } } - if (secondOrderAssembler) { - secondOrderScalableQuadrature->scaleQuadrature(subElInfo); + + void SubElementAssembler::scaleQuadratures(const SubElInfo& subElInfo) + { + if (zeroOrderAssembler) { + zeroOrderScalableQuadrature->scaleQuadrature(subElInfo); + } + if (firstOrderAssemblerGrdPsi) { + firstOrderGrdPsiScalableQuadrature->scaleQuadrature(subElInfo); + } + if (firstOrderAssemblerGrdPhi) { + firstOrderGrdPhiScalableQuadrature->scaleQuadrature(subElInfo); + } + if (secondOrderAssembler) { + secondOrderScalableQuadrature->scaleQuadrature(subElInfo); + } } -} -void -SubElementAssembler::getSubElementVector(SubElInfo *subElInfo, - const ElInfo *elInfo, - ElementVector *userVec) -{ - double corrFactor; - - /** - * Manipulate the quadratures of the SubAssemblers for subelement. - */ - scaleQuadratures(*subElInfo); - - calculateElementVector(elInfo, userVec); - - /** - * The integration has been performed with a quadrature living on element. The - * determinant of element has been used instead of the determinant of subelement. Thus - * the result must be corrected with respect to subelement. - */ - corrFactor = subElInfo->getDet() / fabs(elInfo->getDet()); - int i; - for ( i = 0; i < nRow; i++) { - (*userVec)[i] *= corrFactor; + void SubElementAssembler::getSubElementVector(SubElInfo *subElInfo, + const ElInfo *elInfo, + ElementVector *userVec) + { + double corrFactor; + + /** + * Manipulate the quadratures of the SubAssemblers for subelement. + */ + scaleQuadratures(*subElInfo); + + calculateElementVector(elInfo, userVec); + + /** + * The integration has been performed with a quadrature living on element. The + * determinant of element has been used instead of the determinant of subelement. Thus + * the result must be corrected with respect to subelement. + */ + corrFactor = subElInfo->getDet() / fabs(elInfo->getDet()); + for (int i = 0; i < nRow; i++) { + (*userVec)[i] *= corrFactor; + } } -} -void -SubElementAssembler::getSubElementMatrix(SubElInfo *subElInfo, - const ElInfo *elInfo, - ElementMatrix *userMat) -{ - double corrFactor; - - /** - * Manipulate the quadratures of the SubAssemblers for subelement. - */ - scaleQuadratures(*subElInfo); - - /** - * Integrate using the manipulated quadrature. - */ - calculateElementMatrix(elInfo, userMat); - - /** - * The integration has been performed with a quadrature living on element. The - * determinant of element has been used instead of the determinant of subelement. - * Thus the result must be corrected with respect to subelement. - */ - corrFactor = subElInfo->getDet() / fabs(elInfo->getDet()); - int i, j; - for ( i = 0; i < nRow; i++) { - for ( j = 0; j < nCol; j++) { - (*userMat)[i][j] *= corrFactor; + void SubElementAssembler::getSubElementMatrix(SubElInfo *subElInfo, + const ElInfo *elInfo, + ElementMatrix *userMat) + { + /** + * Manipulate the quadratures of the SubAssemblers for subelement. + */ + scaleQuadratures(*subElInfo); + + /** + * Integrate using the manipulated quadrature. + */ + calculateElementMatrix(elInfo, userMat); + + /** + * The integration has been performed with a quadrature living on element. The + * determinant of element has been used instead of the determinant of subelement. + * Thus the result must be corrected with respect to subelement. + */ + double corrFactor = subElInfo->getDet() / fabs(elInfo->getDet()); + for (int i = 0; i < nRow; i++) { + for (int j = 0; j < nCol; j++) { + (*userMat)[i][j] *= corrFactor; + } } } -} -void -SubElementAssembler::getSubPolytopeVector(SubPolytope *subPolytope, - SubElementAssembler *subElementAssembler, - const ElInfo *elInfo, - ElementVector *subPolVec) -{ - /** - * Note: There is no reset of subPolVec. - */ - std::vector<SubElInfo *>::iterator it; - ElementVector *subElVec = NEW ElementVector(nRow); - int i; - - /** - * Assemble for each subelement of subpolytope. - */ - for (it = subPolytope->getSubElementsBegin(); - it != subPolytope->getSubElementsEnd(); - it++) { - subElVec->set(0.0); - subElementAssembler->getSubElementVector(*it, elInfo, subElVec); + void SubElementAssembler::getSubPolytopeVector(SubPolytope *subPolytope, + SubElementAssembler *subElementAssembler, + const ElInfo *elInfo, + ElementVector *subPolVec) + { + /** + * Note: There is no reset of subPolVec. + */ + std::vector<SubElInfo *>::iterator it; + ElementVector *subElVec = NEW ElementVector(nRow); /** - * Add results for subelement to total result for subpolytope. + * Assemble for each subelement of subpolytope. */ - for(i = 0; i < nRow; i++) { - (*subPolVec)[i] += (*subElVec)[i]; + for (it = subPolytope->getSubElementsBegin(); + it != subPolytope->getSubElementsEnd(); + it++) { + subElVec->set(0.0); + subElementAssembler->getSubElementVector(*it, elInfo, subElVec); + + /** + * Add results for subelement to total result for subpolytope. + */ + for (int i = 0; i < nRow; i++) { + (*subPolVec)[i] += (*subElVec)[i]; + } } - } - DELETE subElVec; -} + DELETE subElVec; + } -void -SubElementAssembler::getSubPolytopeMatrix(SubPolytope *subPolytope, - SubElementAssembler *subElementAssembler, - const ElInfo *elInfo, - ElementMatrix *subPolMat) -{ - /** - * Note: There is no reset of subPolMat. - */ - std::vector<SubElInfo *>::iterator it; - ElementMatrix *subElMat = NEW ElementMatrix(nRow, nCol); - int i,j; - - /** - * Assemble for each subelement of subpolytope. - */ - for (it = subPolytope->getSubElementsBegin(); - it != subPolytope->getSubElementsEnd(); - it++) { - subElMat->set(0.0); - subElementAssembler->getSubElementMatrix(*it, elInfo, subElMat); + void SubElementAssembler::getSubPolytopeMatrix(SubPolytope *subPolytope, + SubElementAssembler *subElementAssembler, + const ElInfo *elInfo, + ElementMatrix *subPolMat) + { + /** + * Note: There is no reset of subPolMat. + */ + std::vector<SubElInfo *>::iterator it; + ElementMatrix *subElMat = NEW ElementMatrix(nRow, nCol); /** - * Add results for subelement to total result for subpolytope. + * Assemble for each subelement of subpolytope. */ - for(i = 0; i < nRow; i++) { - for(j = 0; j < nCol; j++) { - (*subPolMat)[i][j] += (*subElMat)[i][j]; + for (it = subPolytope->getSubElementsBegin(); + it != subPolytope->getSubElementsEnd(); + it++) { + subElMat->set(0.0); + subElementAssembler->getSubElementMatrix(*it, elInfo, subElMat); + + /** + * Add results for subelement to total result for subpolytope. + */ + for (int i = 0; i < nRow; i++) { + for (int j = 0; j < nCol; j++) { + (*subPolMat)[i][j] += (*subElMat)[i][j]; + } } } + + DELETE subElMat; } - DELETE subElMat; } diff --git a/AMDiS/compositeFEM/src/SubElementAssembler.h b/AMDiS/compositeFEM/src/SubElementAssembler.h index 2d995e127fb171d42da7ede840ad1fab489dd5f1..e5697592d80a36395ff2497f5dea00c0ef113bbb 100644 --- a/AMDiS/compositeFEM/src/SubElementAssembler.h +++ b/AMDiS/compositeFEM/src/SubElementAssembler.h @@ -6,99 +6,99 @@ #include "MemoryManager.h" #include "Assembler.h" #include "SubElInfo.h" - #include "ScalableQuadrature.h" -class SubPolytope; +namespace AMDiS { -using namespace AMDiS; -using namespace std; + class SubPolytope; -// ============================================================================ -// ===== class SubElementAssembler ============================================ -// ============================================================================ -// -// Class Desription: -// The class \ref SubElementAssembler holds the routines for the assemblage on -// subpolytopes and subelements. -// The integration on a subpolytope takes place by integrating on the -// subelements and afterwards summing up the results. -// If S' is a sublement and S the element containing S', the numerical integration -// on S' is done by integration on the element S with a manipulated quadrature -// formula and multiplication of the result with a correction term consisting of -// the determinants corresponding to S and S'. That means, the quadrature points -// are manipulated in the following way: -// The original quadrature formula holds quadrature points which are given in -// barycentric coordinates with respect to S'. Now we express these quadrature -// points in barycentric coordinates with respect to S and obtain the manipulated -// quadrature points we need. Obviously, the corresponding quadrature points -// in world coordinates coincide. Thus the numerical integration on S with the -// manipulated quadrature formula gives us the same result as the numerical -// integration on S' with the original quadrature formula up to the determinant. -// This method for integration on subelements allows the reuse of the routines for -// the integration on elements. -// -// The manipulation of the quadrature formula takes place for the corresponding -// assembler type (ZeroOrderAssembler, FirstOrderAssemblerGrdPsi, ...). -// -// Main routines: -// SubElementAssembler() - Creates a scalable quadrature for the appropriate -// assembler type and assigns this quadrature to the -// assembler. -// scaleQuadratures() - Manipulates the scalable quadrature of the -// appropriate assembler type with respect to a -// subelement. -// getSubPolytopeVector() - Calculates the righthandside vector for a polytope. -// getSubPolytopeMatrix() - Calculates the system matrix for a polytope. -// getSubElementVector() - Calculates the righthandside vector for a subelement. -// getSubElementMatrix() - Calculates the system matrix for a subelement. -// ============================================================================ -class SubElementAssembler : public StandardAssembler -{ - public: - MEMORY_MANAGED(SubElementAssembler); + // ============================================================================ + // ===== class SubElementAssembler ============================================ + // ============================================================================ + // + // Class Desription: + // The class \ref SubElementAssembler holds the routines for the assemblage on + // subpolytopes and subelements. + // The integration on a subpolytope takes place by integrating on the + // subelements and afterwards summing up the results. + // If S' is a sublement and S the element containing S', the numerical integration + // on S' is done by integration on the element S with a manipulated quadrature + // formula and multiplication of the result with a correction term consisting of + // the determinants corresponding to S and S'. That means, the quadrature points + // are manipulated in the following way: + // The original quadrature formula holds quadrature points which are given in + // barycentric coordinates with respect to S'. Now we express these quadrature + // points in barycentric coordinates with respect to S and obtain the manipulated + // quadrature points we need. Obviously, the corresponding quadrature points + // in world coordinates coincide. Thus the numerical integration on S with the + // manipulated quadrature formula gives us the same result as the numerical + // integration on S' with the original quadrature formula up to the determinant. + // This method for integration on subelements allows the reuse of the routines for + // the integration on elements. + // + // The manipulation of the quadrature formula takes place for the corresponding + // assembler type (ZeroOrderAssembler, FirstOrderAssemblerGrdPsi, ...). + // + // Main routines: + // SubElementAssembler() - Creates a scalable quadrature for the appropriate + // assembler type and assigns this quadrature to the + // assembler. + // scaleQuadratures() - Manipulates the scalable quadrature of the + // appropriate assembler type with respect to a + // subelement. + // getSubPolytopeVector() - Calculates the righthandside vector for a polytope. + // getSubPolytopeMatrix() - Calculates the system matrix for a polytope. + // getSubElementVector() - Calculates the righthandside vector for a subelement. + // getSubElementMatrix() - Calculates the system matrix for a subelement. + // ============================================================================ + class SubElementAssembler : public StandardAssembler + { + public: + MEMORY_MANAGED(SubElementAssembler); - SubElementAssembler(Operator *op, - const FiniteElemSpace *rowFESpace_, - const FiniteElemSpace *colFESpace_=NULL); + SubElementAssembler(Operator *op, + const FiniteElemSpace *rowFESpace_, + const FiniteElemSpace *colFESpace_=NULL); - virtual ~SubElementAssembler() - { - if (zeroOrderScalableQuadrature) - DELETE zeroOrderScalableQuadrature; - if (firstOrderGrdPsiScalableQuadrature) - DELETE firstOrderGrdPsiScalableQuadrature; - if (firstOrderGrdPhiScalableQuadrature) - DELETE firstOrderGrdPhiScalableQuadrature; - if (secondOrderScalableQuadrature) - DELETE secondOrderScalableQuadrature; - }; + virtual ~SubElementAssembler() + { + if (zeroOrderScalableQuadrature) + DELETE zeroOrderScalableQuadrature; + if (firstOrderGrdPsiScalableQuadrature) + DELETE firstOrderGrdPsiScalableQuadrature; + if (firstOrderGrdPhiScalableQuadrature) + DELETE firstOrderGrdPhiScalableQuadrature; + if (secondOrderScalableQuadrature) + DELETE secondOrderScalableQuadrature; + }; + + void scaleQuadratures(const SubElInfo& subElInfo); - void scaleQuadratures(const SubElInfo& subElInfo); + void getSubElementVector(SubElInfo *subElInfo, + const ElInfo *elInfo, + ElementVector *userVec); - void getSubElementVector(SubElInfo *subElInfo, - const ElInfo *elInfo, - ElementVector *userVec); + void getSubElementMatrix(SubElInfo *subElInfo, + const ElInfo *elInfo, + ElementMatrix *userMat); - void getSubElementMatrix(SubElInfo *subElInfo, - const ElInfo *elInfo, - ElementMatrix *userMat); + void getSubPolytopeVector(SubPolytope *subPolytope, + SubElementAssembler *subElementAssembler, + const ElInfo *elInfo, + ElementVector *userVec); - void getSubPolytopeVector(SubPolytope *subPolytope, - SubElementAssembler *subElementAssembler, - const ElInfo *elInfo, - ElementVector *userVec); + void getSubPolytopeMatrix(SubPolytope *subPolytope, + SubElementAssembler *subElementAssembler, + const ElInfo *elInfo, + ElementMatrix *userMat); - void getSubPolytopeMatrix(SubPolytope *subPolytope, - SubElementAssembler *subElementAssembler, - const ElInfo *elInfo, - ElementMatrix *userMat); + protected: + ScalableQuadrature *zeroOrderScalableQuadrature; + ScalableQuadrature *firstOrderGrdPsiScalableQuadrature; + ScalableQuadrature *firstOrderGrdPhiScalableQuadrature; + ScalableQuadrature *secondOrderScalableQuadrature; + }; -protected: - ScalableQuadrature *zeroOrderScalableQuadrature; - ScalableQuadrature *firstOrderGrdPsiScalableQuadrature; - ScalableQuadrature *firstOrderGrdPhiScalableQuadrature; - ScalableQuadrature *secondOrderScalableQuadrature; -}; +} #endif // AMDIS_SUBELEMENTASSEMBLER_H diff --git a/AMDiS/compositeFEM/src/SubPolytope.cc b/AMDiS/compositeFEM/src/SubPolytope.cc index 5f9c8de7ce22393ad645b0804effc32de3f07606..4403dc7f6319880ea0e86c1e37a3d49e0fa9aaaa 100644 --- a/AMDiS/compositeFEM/src/SubPolytope.cc +++ b/AMDiS/compositeFEM/src/SubPolytope.cc @@ -3,74 +3,76 @@ #include "SubElInfo.h" #include "SubPolytope.h" -bool SubPolytope::checkIntPoints() -{ - //////////////////////////////////////////////////////////////////////////// - // - // Do the points in intPoints lie on edges ? And are they inner points, - // i.e. they aren't vertices ? - // - // Return value: true - yes - // false - no - //////////////////////////////////////////////////////////////////////////// - - int zeroCounter; - - for (int i = 0; i < numIntPoints; i++) { - zeroCounter = 0; - for (int j = 0; j < dim+1; j++) { - if (fabs((*intPoints)[i][j]) <= 1.e-15 ) { - zeroCounter++; +namespace AMDiS { + + bool SubPolytope::checkIntPoints() + { + //////////////////////////////////////////////////////////////////////////// + // + // Do the points in intPoints lie on edges ? And are they inner points, + // i.e. they aren't vertices ? + // + // Return value: true - yes + // false - no + //////////////////////////////////////////////////////////////////////////// + + int zeroCounter; + + for (int i = 0; i < numIntPoints; i++) { + zeroCounter = 0; + for (int j = 0; j < dim+1; j++) { + if (fabs((*intPoints)[i][j]) <= 1.e-15 ) { + zeroCounter++; + } } - } - /** - * Dimension 1 - * - * "Inner" points on edges aren't equal to 0.0 in any component. - */ - if (dim == 1 && zeroCounter != 0 ) { - return false; - } + /** + * Dimension 1 + * + * "Inner" points on edges aren't equal to 0.0 in any component. + */ + if (dim == 1 && zeroCounter != 0 ) { + return false; + } - /** - * Dimension 2 - * - * "Inner" points on edges are equal to 0.0 in exactly 1 component. - */ - if (dim == 2 && zeroCounter != 1) { - return false; - } + /** + * Dimension 2 + * + * "Inner" points on edges are equal to 0.0 in exactly 1 component. + */ + if (dim == 2 && zeroCounter != 1) { + return false; + } - /** - * Dimension 3 - * - * "Inner" points on edges are equal to 0.0 in exactly 2 components. - */ - if (dim == 3 && zeroCounter != 2) { - return false; + /** + * Dimension 3 + * + * "Inner" points on edges are equal to 0.0 in exactly 2 components. + */ + if (dim == 3 && zeroCounter != 2) { + return false; + } } - } - return true; -} + return true; + } -SubPolytope::SubPolytope(const ElInfo *elInfo_, - VectorOfFixVecs<DimVec<double> > *intPoints_, - int numIntPoints_, - const int &indexElVertInPol_) - : elInfo(elInfo_), - intPoints(intPoints_), - numIntPoints(numIntPoints_) -{ - FUNCNAME("SubPolytope::SubPolytope()"); - - dim = (*intPoints_)[0].getSize() - 1; - - TEST_EXIT((dim == 1 && numIntPoints == 1) || - (dim == 2 && numIntPoints == 2) || - (dim == 3 && numIntPoints == 3) || - (dim == 3 && numIntPoints == 4)) + SubPolytope::SubPolytope(const ElInfo *elInfo_, + VectorOfFixVecs<DimVec<double> > *intPoints_, + int numIntPoints_, + const int &indexElVertInPol_) + : elInfo(elInfo_), + intPoints(intPoints_), + numIntPoints(numIntPoints_) + { + FUNCNAME("SubPolytope::SubPolytope()"); + + dim = (*intPoints_)[0].getSize() - 1; + + TEST_EXIT((dim == 1 && numIntPoints == 1) || + (dim == 2 && numIntPoints == 2) || + (dim == 3 && numIntPoints == 3) || + (dim == 3 && numIntPoints == 4)) ("invalid number of intersection points\n"); /** @@ -101,389 +103,391 @@ SubPolytope::SubPolytope(const ElInfo *elInfo_, ERROR_EXIT("invalid dimension\n"); break; } -} + } -void SubPolytope::createSubElementPolytopeIsSubElement1D(int indexElVertInPol) -{ - //************************************************************************** - // The intersection of the one-dimensional element (interval) divides - // element into two subelements. indexElVertInPol indicates which - // subelement to take. - //************************************************************************** + void SubPolytope::createSubElementPolytopeIsSubElement1D(int indexElVertInPol) + { + //************************************************************************** + // The intersection of the one-dimensional element (interval) divides + // element into two subelements. indexElVertInPol indicates which + // subelement to take. + //************************************************************************** - FUNCNAME("SubPolytope::createSubElementPolytopeIsSubElement1D()"); + FUNCNAME("SubPolytope::createSubElementPolytopeIsSubElement1D()"); - TEST_EXIT(dim == 1 && numIntPoints == 1)("invalid call of this routine\n"); + TEST_EXIT(dim == 1 && numIntPoints == 1)("invalid call of this routine\n"); - VectorOfFixVecs<DimVec<double> > *subElVertices = - NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); - DimVec<double> vertex(dim, DEFAULT_VALUE, 1.0); + VectorOfFixVecs<DimVec<double> > *subElVertices = + NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); + DimVec<double> vertex(dim, DEFAULT_VALUE, 1.0); - /** - * Get the vertex which - with the intersection point in intPoints - forms - * a subelement of element. - */ - if (indexElVertInPol == 0) { /** - * The vertex in element with barycentric coordinates (1,0) is in - * subelement. + * Get the vertex which - with the intersection point in intPoints - forms + * a subelement of element. */ - vertex[1] = 0.0; - } - else { + if (indexElVertInPol == 0) { + /** + * The vertex in element with barycentric coordinates (1,0) is in + * subelement. + */ + vertex[1] = 0.0; + } + else { + /** + * The vertex in element with barycentric coordinates (0,1) is in + * subelement. + */ + vertex[0] = 0.0; + } + /** - * The vertex in element with barycentric coordinates (0,1) is in - * subelement. + * Collect the vertices of the subelement in subElVertices. + * + * Note: The routines CompositeFEMOperator::getElementMatrix and + * CompositeFEMOperator::getElementVector expect the first vertice + * of a subelement to be a vertice of the corresponding element and + * not to be an intersection point. */ - vertex[0] = 0.0; - } + (*subElVertices)[0] = vertex; + (*subElVertices)[dim] = (*intPoints)[0]; - /** - * Collect the vertices of the subelement in subElVertices. - * - * Note: The routines CompositeFEMOperator::getElementMatrix and - * CompositeFEMOperator::getElementVector expect the first vertice - * of a subelement to be a vertice of the corresponding element and - * not to be an intersection point. - */ - (*subElVertices)[0] = vertex; - (*subElVertices)[dim] = (*intPoints)[0]; + /** + * Create a new ElInfo for the subelement. + */ + subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); - /** - * Create a new ElInfo for the subelement. - */ - subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); + TEST_EXIT( subElements.size() == 1 )("error in creating subelements"); + numSubElements = 1; - TEST_EXIT( subElements.size() == 1 )("error in creating subelements"); - numSubElements = 1; + DELETE subElVertices; + } - DELETE subElVertices; -} + void SubPolytope::createSubElementPolytopeIsSubElement2D3D() + { + //************************************************************************** + // The intersection with element produced dim intersection points. + // Thus there is exactly one vertice in element which - with the + // intersection points - forms a subelement of element. + // This routine determines this vertex and creates a new object of SubElInfo + // for the subelement stored in subElements. + // + // How does it work ? + // All intersection points lie on edges of element and aren't vertices. The + // missing vertex is the intersection point of these edges. + // Lying on edges means, that each intersection point has exactly one + // component equal to 0.0. The missing vertex is equal to 0.0 in all these + // components. + //************************************************************************** + + FUNCNAME("SubPolytope::createSubElementPolytopeIsSubElement2D3D()"); + + TEST_EXIT((dim == 2 && numIntPoints == 2) || + (dim == 3 && numIntPoints == 3)) + ("invalid call of this routine\n"); + + VectorOfFixVecs<DimVec<double> >*subElVertices = + NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); + DimVec<double> vertex(dim, DEFAULT_VALUE, 1.0); -void SubPolytope::createSubElementPolytopeIsSubElement2D3D() -{ - //************************************************************************** - // The intersection with element produced dim intersection points. - // Thus there is exactly one vertice in element which - with the - // intersection points - forms a subelement of element. - // This routine determines this vertex and creates a new object of SubElInfo - // for the subelement stored in subElements. - // - // How does it work ? - // All intersection points lie on edges of element and aren't vertices. The - // missing vertex is the intersection point of these edges. - // Lying on edges means, that each intersection point has exactly one - // component equal to 0.0. The missing vertex is equal to 0.0 in all these - // components. - //************************************************************************** - - FUNCNAME("SubPolytope::createSubElementPolytopeIsSubElement2D3D()"); - - TEST_EXIT((dim == 2 && numIntPoints == 2) || - (dim == 3 && numIntPoints == 3)) - ("invalid call of this routine\n"); - - VectorOfFixVecs<DimVec<double> >*subElVertices = - NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); - DimVec<double> vertex(dim, DEFAULT_VALUE, 1.0); - - /** - * Get the vertex which - with the intersection points intPoints - forms - * a subelement of element. - */ - for (int i = 0; i < numIntPoints; i++) { - for (int j = 0; j < dim+1; j++) { - if ( fabs((*intPoints)[i][j]) <= 1.e-15 ) { - vertex[j] = 0.0; - }; + /** + * Get the vertex which - with the intersection points intPoints - forms + * a subelement of element. + */ + for (int i = 0; i < numIntPoints; i++) { + for (int j = 0; j < dim+1; j++) { + if ( fabs((*intPoints)[i][j]) <= 1.e-15 ) { + vertex[j] = 0.0; + }; + } } - } - /** - * Collect the vertices of the subelement in subElVertices. - * - * Note: The routines CompositeFEMOperator::getElementMatrix and - * CompositeFEMOperator::getElementVector expect the first vertice - * of a subelement to be a vertice of the corresponding element and - * not to be an intersection point. - */ - (*subElVertices)[0] = vertex; - for (int i = 0; i < numIntPoints; i++) { - (*subElVertices)[i+1] = (*intPoints)[i]; - } + /** + * Collect the vertices of the subelement in subElVertices. + * + * Note: The routines CompositeFEMOperator::getElementMatrix and + * CompositeFEMOperator::getElementVector expect the first vertice + * of a subelement to be a vertice of the corresponding element and + * not to be an intersection point. + */ + (*subElVertices)[0] = vertex; + for (int i = 0; i < numIntPoints; i++) { + (*subElVertices)[i+1] = (*intPoints)[i]; + } - /** - * Create a new ElInfo for the subelement. - */ - subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); + /** + * Create a new ElInfo for the subelement. + */ + subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); - TEST_EXIT( subElements.size() == 1 )("error in creating subelements"); - numSubElements = 1; + TEST_EXIT( subElements.size() == 1 )("error in creating subelements"); + numSubElements = 1; - DELETE subElVertices; -} + DELETE subElVertices; + } -int SubPolytope::getIndexSecondFaceIntPoint0(int indexFirstFace, int dim) -{ - for (int i = 0; i < dim+1; i++) { - if ( fabs((*intPoints)[0][i]) <= 1.e-15 && i != indexFirstFace ) { - return i; + int SubPolytope::getIndexSecondFaceIntPoint0(int indexFirstFace, int dim) + { + for (int i = 0; i < dim+1; i++) { + if ( fabs((*intPoints)[0][i]) <= 1.e-15 && i != indexFirstFace ) { + return i; + } } - } - ERROR_EXIT("couldn't determine the second face for IntPoint0\n"); - return -1; -} + ERROR_EXIT("couldn't determine the second face for IntPoint0\n"); + return -1; + } -void SubPolytope::createSubElementsForPolytope3D(int indexElVertInPol1) -{ - //************************************************************************** - // The intersection with element produced four intersection points. Thus the - // intersection doesn't induce a subelement. This routine divides the - // subpolytope given by the intersection into three subelements. - // - // How does it work ? - // The intersection points and two vertices of element form a subpolytope - // of element. First of all, we determine these vertices, and call them - // A and B. Then we sort the intersection points (S_0, S_1, S_2, S_3) - // in the following way: - // S_0 is the first intersection point in the creation-list /ref intPoints_. - // A and S_0 lie in the face of element opposite to B. - // S_0 and S_1 are neighbours of A. - // S_2 is opposite to S_0 in the intersection plane. - // S_1 and S_3 are neighbours of A. - // Then the subelements are: - // A - B - S_0 - S_1 , B - S_0 - S_1 - S_2 , B - S_0 - S_2 - S_3 . - // - // The index of one vertex of element that is in subpolytope is handed to - // this routine. The subpolytope is determined uniquely by this vertex and - // the intersection points. - //************************************************************************** - - FUNCNAME("SubPolytope::createSubElementForPolytope3D"); - - TEST_EXIT(dim == 3 && numIntPoints == 4)("invalid call of this routine\n"); - - TEST_EXIT(0 <= indexElVertInPol1 && indexElVertInPol1 <= 3) - ("invalid index for vertex of a tetrahedron"); - - VectorOfFixVecs<DimVec<double> > *subElVertices = - NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); - DimVec<double> vertexA(dim, DEFAULT_VALUE, 0.0); - DimVec<double> vertexB(dim, DEFAULT_VALUE, 0.0); - - int indexElVertInPol2; // index of second vertex of element lying in - // subpolytope - // The vertices of element (3D -> tetrahedron) are - // indexed as usual: - // 0: (1,0,0,0), 1: (0,1,0,0), 2: (0,0,1,0), - // 3: (0,0,0,1) - bool intPointOnEdge[4][4] = {{false, false, false, false}, - {false, false, false, false}, - {false, false, false, false}, - {false, false, false, false}}; - // /ref intPointOnEdge[i][j] indicates whether there - // is an intersection point on the edge from - // vertice i to vertice j : - // false : no intersection point - // true: there is an intersection point - int indexEdge[2]; // For a vertex lying on an edge indexEdge - // stores the indices of the two barycentric - // coordinates which are not equal to zero. - int indexA = 0; - int indexB = 0; - int indexS_0 = 0; - int indexS_1 = 0; - int indexS_2 = 0; - int indexS_3 = 0; - int indexSecondFaceIntPoint0 = 0; - - /** - * Get the second vertex of element lying in subpolytope. - * - * There is exactly one vertex of element which - with vertex - * indexElVertInPol1 and the intersection points intPoints - - * forms a subpolytope of element. It is the vertex adjacent with - * indexElVertInPol1 whose common edge with indexElVertInPol1 - * doesn't contain an intersection point. - */ - - // Get the edges including the intersection points. - for (int i = 0; i < numIntPoints; i++) { - int k = 0; - for (int j = 0; j < dim+1; j++) { - if (fabs((*intPoints)[i][j]) > 1.e-15 ) { - indexEdge[k] = j; - k++; + void SubPolytope::createSubElementsForPolytope3D(int indexElVertInPol1) + { + //************************************************************************** + // The intersection with element produced four intersection points. Thus the + // intersection doesn't induce a subelement. This routine divides the + // subpolytope given by the intersection into three subelements. + // + // How does it work ? + // The intersection points and two vertices of element form a subpolytope + // of element. First of all, we determine these vertices, and call them + // A and B. Then we sort the intersection points (S_0, S_1, S_2, S_3) + // in the following way: + // S_0 is the first intersection point in the creation-list /ref intPoints_. + // A and S_0 lie in the face of element opposite to B. + // S_0 and S_1 are neighbours of A. + // S_2 is opposite to S_0 in the intersection plane. + // S_1 and S_3 are neighbours of A. + // Then the subelements are: + // A - B - S_0 - S_1 , B - S_0 - S_1 - S_2 , B - S_0 - S_2 - S_3 . + // + // The index of one vertex of element that is in subpolytope is handed to + // this routine. The subpolytope is determined uniquely by this vertex and + // the intersection points. + //************************************************************************** + + FUNCNAME("SubPolytope::createSubElementForPolytope3D"); + + TEST_EXIT(dim == 3 && numIntPoints == 4)("invalid call of this routine\n"); + + TEST_EXIT(0 <= indexElVertInPol1 && indexElVertInPol1 <= 3) + ("invalid index for vertex of a tetrahedron"); + + VectorOfFixVecs<DimVec<double> > *subElVertices = + NEW VectorOfFixVecs<DimVec<double> >(dim, dim+1, NO_INIT); + DimVec<double> vertexA(dim, DEFAULT_VALUE, 0.0); + DimVec<double> vertexB(dim, DEFAULT_VALUE, 0.0); + + int indexElVertInPol2 = 0; // index of second vertex of element lying in + // subpolytope + // The vertices of element (3D -> tetrahedron) are + // indexed as usual: + // 0: (1,0,0,0), 1: (0,1,0,0), 2: (0,0,1,0), + // 3: (0,0,0,1) + bool intPointOnEdge[4][4] = {{false, false, false, false}, + {false, false, false, false}, + {false, false, false, false}, + {false, false, false, false}}; + // /ref intPointOnEdge[i][j] indicates whether there + // is an intersection point on the edge from + // vertice i to vertice j : + // false : no intersection point + // true: there is an intersection point + int indexEdge[2]; // For a vertex lying on an edge indexEdge + // stores the indices of the two barycentric + // coordinates which are not equal to zero. + int indexA = 0; + int indexB = 0; + int indexS_0 = 0; + int indexS_1 = 0; + int indexS_2 = 0; + int indexS_3 = 0; + int indexSecondFaceIntPoint0 = 0; + + /** + * Get the second vertex of element lying in subpolytope. + * + * There is exactly one vertex of element which - with vertex + * indexElVertInPol1 and the intersection points intPoints - + * forms a subpolytope of element. It is the vertex adjacent with + * indexElVertInPol1 whose common edge with indexElVertInPol1 + * doesn't contain an intersection point. + */ + + // Get the edges including the intersection points. + for (int i = 0; i < numIntPoints; i++) { + int k = 0; + for (int j = 0; j < dim+1; j++) { + if (fabs((*intPoints)[i][j]) > 1.e-15 ) { + indexEdge[k] = j; + k++; + } } + intPointOnEdge[indexEdge[0]][indexEdge[1]] = true; + intPointOnEdge[indexEdge[1]][indexEdge[0]] = true; } - intPointOnEdge[indexEdge[0]][indexEdge[1]] = true; - intPointOnEdge[indexEdge[1]][indexEdge[0]] = true; - } - // Get the vertex of element adjacent with indexElVertInPol1 whose - // common edge with indexElVertInPol1 doesn't contain an - // intersection point, and store it in indexElVertInPol2. - for (int i = 0; i < dim+1; i++) { - if (intPointOnEdge[indexElVertInPol1][i] == false && - i != indexElVertInPol1 ) { - indexElVertInPol2 = i; - break; + // Get the vertex of element adjacent with indexElVertInPol1 whose + // common edge with indexElVertInPol1 doesn't contain an + // intersection point, and store it in indexElVertInPol2. + for (int i = 0; i < dim+1; i++) { + if (intPointOnEdge[indexElVertInPol1][i] == false && + i != indexElVertInPol1 ) { + indexElVertInPol2 = i; + break; + } } - } - /** - * Determine A and B, so that intPoint0 is a neighbour of A. - * - * In the subpolytope A and two intersection points lie in the face - * opposite to B. And B and the other two intersection points lie in the - * face opposite to A. - */ + /** + * Determine A and B, so that intPoint0 is a neighbour of A. + * + * In the subpolytope A and two intersection points lie in the face + * opposite to B. And B and the other two intersection points lie in the + * face opposite to A. + */ - if (fabs((*intPoints)[0][indexElVertInPol1]) <= 1.e-15) { + if (fabs((*intPoints)[0][indexElVertInPol1]) <= 1.e-15) { - // (*intPoints)[0] lies in the face opposite to vertex - // /ref indexElVertInPol1. + // (*intPoints)[0] lies in the face opposite to vertex + // /ref indexElVertInPol1. - indexA = indexElVertInPol2; - indexB = indexElVertInPol1; - } else if (fabs((*intPoints)[0][indexElVertInPol2]) <= 1.e-15) { + indexA = indexElVertInPol2; + indexB = indexElVertInPol1; + } else if (fabs((*intPoints)[0][indexElVertInPol2]) <= 1.e-15) { - // (*intPoints)[0] lies in the face opposite to vertex - // /ref indexElVertInPol2. + // (*intPoints)[0] lies in the face opposite to vertex + // /ref indexElVertInPol2. - indexA = indexElVertInPol1; - indexB = indexElVertInPol2; - } else { - ERROR_EXIT("couldn't determine A and B\n"); - } + indexA = indexElVertInPol1; + indexB = indexElVertInPol2; + } else { + ERROR_EXIT("couldn't determine A and B\n"); + } - /** - * Sort the intersection points. - */ + /** + * Sort the intersection points. + */ - // (*intPoints)[0] is a neighbour of A (A has been constructed this way). - indexS_0 = 0; + // (*intPoints)[0] is a neighbour of A (A has been constructed this way). + indexS_0 = 0; - if (fabs((*intPoints)[1][indexB]) <= 1.e-15) { + if (fabs((*intPoints)[1][indexB]) <= 1.e-15) { - // (*intPoints)[1] lies in the face opposite to B, thus is a neighbour - // of A. + // (*intPoints)[1] lies in the face opposite to B, thus is a neighbour + // of A. - indexS_1 = 1; + indexS_1 = 1; - indexSecondFaceIntPoint0 = getIndexSecondFaceIntPoint0(indexB, dim); + indexSecondFaceIntPoint0 = getIndexSecondFaceIntPoint0(indexB, dim); - if (fabs((*intPoints)[2][indexSecondFaceIntPoint0]) <= 1.e-15) { + if (fabs((*intPoints)[2][indexSecondFaceIntPoint0]) <= 1.e-15) { - // (*intPoints)[2] is neighbour of (*intPoints)[0] + // (*intPoints)[2] is neighbour of (*intPoints)[0] - indexS_2 = 3; - indexS_3 = 2; - } else { + indexS_2 = 3; + indexS_3 = 2; + } else { - // (*intPoints)[2] is opposite to (*intPoints)[0] in the intersection - // plane + // (*intPoints)[2] is opposite to (*intPoints)[0] in the intersection + // plane - indexS_2 = 2; - indexS_3 = 3; - } - } else if (fabs((*intPoints)[1][indexA]) <= 1.e-15) { + indexS_2 = 2; + indexS_3 = 3; + } + } else if (fabs((*intPoints)[1][indexA]) <= 1.e-15) { - // (*intPoints)[1] lies in the face opposite to A + // (*intPoints)[1] lies in the face opposite to A - indexSecondFaceIntPoint0 = getIndexSecondFaceIntPoint0(indexB, dim); + indexSecondFaceIntPoint0 = getIndexSecondFaceIntPoint0(indexB, dim); - if (fabs((*intPoints)[1][indexSecondFaceIntPoint0]) <= 1.e-15) { + if (fabs((*intPoints)[1][indexSecondFaceIntPoint0]) <= 1.e-15) { - // (*intPoints)[1] is neighbour of (*intPoints)[0], but isn't - // neighbour of A + // (*intPoints)[1] is neighbour of (*intPoints)[0], but isn't + // neighbour of A - indexS_3 = 1; + indexS_3 = 1; - if (fabs((*intPoints)[2][indexB]) <= 1.e-15) { + if (fabs((*intPoints)[2][indexB]) <= 1.e-15) { - // (*intPoints)[2] is neighbour of (*intPoints)[0] and neighbour of A + // (*intPoints)[2] is neighbour of (*intPoints)[0] and neighbour of A - indexS_1 = 2; - indexS_2 = 3; - } else { + indexS_1 = 2; + indexS_2 = 3; + } else { - // (*intPoints)[2] is opposite to (*intPoints)[0] in the intersection - // plane + // (*intPoints)[2] is opposite to (*intPoints)[0] in the intersection + // plane - indexS_1 = 3; - indexS_2 = 2; - } - } else { + indexS_1 = 3; + indexS_2 = 2; + } + } else { - // (*intPoints)[1] isn't neighbour of (*intPoints)[0], thus lies opposite - // to (*intPoints)[0] in the intersection plane + // (*intPoints)[1] isn't neighbour of (*intPoints)[0], thus lies opposite + // to (*intPoints)[0] in the intersection plane - indexS_2 = 1; + indexS_2 = 1; - if (fabs((*intPoints)[2][indexB]) <= 1.e-15) { + if (fabs((*intPoints)[2][indexB]) <= 1.e-15) { - // (*intPoints)[2] is neighbour of A + // (*intPoints)[2] is neighbour of A - indexS_1 = 2; - indexS_3 = 3; - } else { + indexS_1 = 2; + indexS_3 = 3; + } else { - // (*intPoints)[2] isn't neighbour of A + // (*intPoints)[2] isn't neighbour of A - indexS_1 = 3; - indexS_3 = 2; + indexS_1 = 3; + indexS_3 = 2; + } } + } else { + ERROR_EXIT("IntPoint1 isn't either part of the face opposite to A nor part of the face opposite to B\n"); } - } else { - ERROR_EXIT("IntPoint1 isn't either part of the face opposite to A nor part of the face opposite to B\n"); + + /** + * For each subelement: Collect the vertices of the subelement in + * subElVertices, create a new SubElInfo for the subelement and + * store it in subElements. + * + * Note: The routines CompositeFEMOperator::getElementMatrix and + * CompositeFEMOperator::getElementVector expect the first vertice + * of a subelement to be a vertice of the corresponding element and + * not to be an intersection point. + */ + + // Create vertex A and vertex B. + vertexA[indexA] = 1.0; + vertexB[indexB] = 1.0; + + // Subelement 1: A - B - S_0 - S_1 + (*subElVertices)[0] = vertexA; + (*subElVertices)[1] = vertexB; + (*subElVertices)[2] = (*intPoints)[indexS_0]; + (*subElVertices)[3] = (*intPoints)[indexS_1]; + subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); + + // Subelement 2: B - S_0 - S_1 - S_2 + (*subElVertices)[0] = vertexB; + (*subElVertices)[1] = (*intPoints)[indexS_0]; + (*subElVertices)[2] = (*intPoints)[indexS_1]; + (*subElVertices)[3] = (*intPoints)[indexS_2]; + subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); + + // Subelement 3: B - S_0 - S_2 - S_3 + (*subElVertices)[0] = vertexB; + (*subElVertices)[1] = (*intPoints)[indexS_0]; + (*subElVertices)[2] = (*intPoints)[indexS_2]; + (*subElVertices)[3] = (*intPoints)[indexS_3]; + subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); + + TEST_EXIT( subElements.size() == 3 )("error in creating subelements"); + numSubElements = 3; + + DELETE subElVertices; } - /** - * For each subelement: Collect the vertices of the subelement in - * subElVertices, create a new SubElInfo for the subelement and - * store it in subElements. - * - * Note: The routines CompositeFEMOperator::getElementMatrix and - * CompositeFEMOperator::getElementVector expect the first vertice - * of a subelement to be a vertice of the corresponding element and - * not to be an intersection point. - */ - - // Create vertex A and vertex B. - vertexA[indexA] = 1.0; - vertexB[indexB] = 1.0; - - // Subelement 1: A - B - S_0 - S_1 - (*subElVertices)[0] = vertexA; - (*subElVertices)[1] = vertexB; - (*subElVertices)[2] = (*intPoints)[indexS_0]; - (*subElVertices)[3] = (*intPoints)[indexS_1]; - subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); - - // Subelement 2: B - S_0 - S_1 - S_2 - (*subElVertices)[0] = vertexB; - (*subElVertices)[1] = (*intPoints)[indexS_0]; - (*subElVertices)[2] = (*intPoints)[indexS_1]; - (*subElVertices)[3] = (*intPoints)[indexS_2]; - subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); - - // Subelement 3: B - S_0 - S_2 - S_3 - (*subElVertices)[0] = vertexB; - (*subElVertices)[1] = (*intPoints)[indexS_0]; - (*subElVertices)[2] = (*intPoints)[indexS_2]; - (*subElVertices)[3] = (*intPoints)[indexS_3]; - subElements.push_back( NEW SubElInfo(subElVertices, elInfo) ); - - TEST_EXIT( subElements.size() == 3 )("error in creating subelements"); - numSubElements = 3; - - DELETE subElVertices; } diff --git a/AMDiS/compositeFEM/src/SubPolytope.h b/AMDiS/compositeFEM/src/SubPolytope.h index d91a02028bf3869936b7aea60f482d76a11e8250..1b59a5888e2f4493fdfbda25630c24293ef637e0 100644 --- a/AMDiS/compositeFEM/src/SubPolytope.h +++ b/AMDiS/compositeFEM/src/SubPolytope.h @@ -8,195 +8,190 @@ #include "MemoryManager.h" #include "Mesh.h" #include "FixVec.h" - #include "SubElInfo.h" -using namespace AMDiS; -using namespace std; - -// =========================================================================== -// === class SubPolytope ===================================================== -// =========================================================================== -// -// Class description: -// The class SubPolytope holds the functionality for the division of a -// subpolytope in subelements and contains a list of these subelements -// in subElements. The number of subelements is given in numSubElements. -// -// The subpolytope of the element elInfo is initially given by the -// intersection points (barycentric coordinates with respect to element) -// resulting from the intersection of a "plane" with the element. -// There is/are -// 1 intersection point in 1-dimensional finite element space, -// 2 intersection points in 2-dimensional finite element space, -// 3 or 4 intersection points in 3-dimensional finite element space. -// A detailed description of how the division into subelements works can be -// found in the corresponding routines. -// -// Note: This functionality is restricted to the finite element dimensions -// 1, 2 and 3. -// -// Note: The intersection points are expected to lie exactly on edges. -// That means in the barycentric coordinate vector there are exactly -// as many components equal to zero as are expected for points on edges. -// -// Main routines: -// SubPolytope() - Creates the subelements for a subpolytope given by the -// intersection points intPoints and stores them in -// subElements. -// createSubElementPolytopeIsSubElement1D() -// - Creates the subelement in 1-dimensional finite element -// space. -// createSubElementPolytopeIsSubElement2D3D() -// - Creates the subelement in 2-dimensional finite element -// space and in 3-dimensional finite element space if there -// are 3 intersection points. -// createSubElementsForPolytope3D() -// - Creates the 3 subelements in 3-dimensional finite element -// space if there are 4 intersection points. -// ============================================================================ - -class SubPolytope -{ - public: - MEMORY_MANAGED(SubPolytope); - - /** - * Constructor - * - * Divides the polytope produced by the intersection into subelements. - * In dimensions 1 and 3 (case "4 intersection points") indexElVertInPol_ - * indicates which subpolytope to divide. The element vertice with index - * indexElVertInPol_ is a vertice of the choosen subpolytope. - * Here the standard vertice numeration is used (e.g. in dimension 3: - * (1,0,0,0) - index 0, (0,1,0,0) - index 1, ...) - * The subelements are stored in subElements. - */ - SubPolytope(const ElInfo *elInfo_, - VectorOfFixVecs<DimVec<double> > *intPoints_, - int numIntPoints_, - const int &indexElVertInPol_=0); - - /** - * Destructor - */ - ~SubPolytope() +namespace AMDiS { + + // =========================================================================== + // === class SubPolytope ===================================================== + // =========================================================================== + // + // Class description: + // The class SubPolytope holds the functionality for the division of a + // subpolytope in subelements and contains a list of these subelements + // in subElements. The number of subelements is given in numSubElements. + // + // The subpolytope of the element elInfo is initially given by the + // intersection points (barycentric coordinates with respect to element) + // resulting from the intersection of a "plane" with the element. + // There is/are + // 1 intersection point in 1-dimensional finite element space, + // 2 intersection points in 2-dimensional finite element space, + // 3 or 4 intersection points in 3-dimensional finite element space. + // A detailed description of how the division into subelements works can be + // found in the corresponding routines. + // + // Note: This functionality is restricted to the finite element dimensions + // 1, 2 and 3. + // + // Note: The intersection points are expected to lie exactly on edges. + // That means in the barycentric coordinate vector there are exactly + // as many components equal to zero as are expected for points on edges. + // + // Main routines: + // SubPolytope() - Creates the subelements for a subpolytope given by the + // intersection points intPoints and stores them in + // subElements. + // createSubElementPolytopeIsSubElement1D() + // - Creates the subelement in 1-dimensional finite element + // space. + // createSubElementPolytopeIsSubElement2D3D() + // - Creates the subelement in 2-dimensional finite element + // space and in 3-dimensional finite element space if there + // are 3 intersection points. + // createSubElementsForPolytope3D() + // - Creates the 3 subelements in 3-dimensional finite element + // space if there are 4 intersection points. + // ============================================================================ + + class SubPolytope { - int i; - - for (i = 0; i < numSubElements; i++) { - DELETE subElements[i]; + public: + MEMORY_MANAGED(SubPolytope); + + /** + * Constructor + * + * Divides the polytope produced by the intersection into subelements. + * In dimensions 1 and 3 (case "4 intersection points") indexElVertInPol_ + * indicates which subpolytope to divide. The element vertice with index + * indexElVertInPol_ is a vertice of the choosen subpolytope. + * Here the standard vertice numeration is used (e.g. in dimension 3: + * (1,0,0,0) - index 0, (0,1,0,0) - index 1, ...) + * The subelements are stored in subElements. + */ + SubPolytope(const ElInfo *elInfo_, + VectorOfFixVecs<DimVec<double> > *intPoints_, + int numIntPoints_, + const int &indexElVertInPol_ = 0); + + /** + * Destructor + */ + ~SubPolytope() { + for (int i = 0; i < numSubElements; i++) { + DELETE subElements[i]; + } + }; + + /** + * Returns begin of vector subElements. + */ + inline std::vector<SubElInfo *>::iterator getSubElementsBegin() { + return subElements.begin(); } - }; - - /** - * Returns begin of vector subElements. - */ - inline std::vector<SubElInfo *>::iterator getSubElementsBegin() - { - return subElements.begin(); - } - /** - * Returns end of vector subElements. - */ - inline std::vector<SubElInfo *>::iterator getSubElementsEnd() - { - return subElements.end(); - } + /** + * Returns end of vector subElements. + */ + inline std::vector<SubElInfo *>::iterator getSubElementsEnd() { + return subElements.end(); + } - /** - * Returns num-th subelement of polytope. - */ - inline SubElInfo* getSubElement(int num) - { - FUNCNAME("SubPolytope::getSubElement"); + /** + * Returns num-th subelement of polytope. + */ + inline SubElInfo* getSubElement(int num) { + FUNCNAME("SubPolytope::getSubElement()"); - TEST_EXIT(num <= numSubElements)("invalid index for subelement"); - return subElements[num]; - } - - /** - * Returns the number of subelements of the polytope. - */ - inline int getNumSubElements() { return numSubElements; } - - protected: - - /** - * Checks whether the elements of intPoints are really intersection points, - * i.e. lie on edges. - */ - bool checkIntPoints(); - - /** - * In 1-dimensional space the intersection of an element always produces - * two subelements. indexElVertInPol indicates which subelement to take. - * The resulting subelement is created by this routine. - */ - void createSubElementPolytopeIsSubElement1D(int indexElVertInPol); - - /** - * In 2-dimensional space the intersection of an element always produces - * a subelement. The same in 3-dimensional space, if the intersection has - * three intersection points. - * The resulting subelement is created by this routine. - */ - void createSubElementPolytopeIsSubElement2D3D(); - - /** - * Routine used in createSubElementsForPolytope(). - * - * The intersection point /ref intPoints[0] lies on an edge of element - * and isn't a vertex of element. Thus it lies in exactly two faces. - * In barycentric coordinates, lying in the face opposite to e.g. (0,1,0,0) - * means that the second barycentric coordinate is equal to zero. We - * give this face the index 1 (we start indexing by 0). - * In this routine we know already one face containing intPoints[0], - * namely indexFirstFace. The task of the routine is to get the - * second face. - */ - int getIndexSecondFaceIntPoint0(int indexFirstFace, int dim); - - /** - * If in 3-dimensional space the intersection of an element has four - * intersection points, the resulting polytope is no subelement, but it - * can be divided into three subelements. This is done by this routine. - */ - void createSubElementsForPolytope3D(int indexElVertInPol); - - protected: - - /** - * elInfo of the element containing the polytope - */ - const ElInfo *elInfo; - - /** - * Intersection points with the element in barycentric coordinates with - * respect to element - */ - VectorOfFixVecs<DimVec<double> > *intPoints; - - /** - * Number of intersection points - */ - int numIntPoints; - - /** - * List of the subelements of subpolytope - */ - vector<SubElInfo *> subElements; - - /** - * Number of subelements - */ - int numSubElements; - - /** - * Dimension of the polytope - */ - int dim; -}; + TEST_EXIT(num <= numSubElements)("invalid index for subelement"); + return subElements[num]; + } + + /** + * Returns the number of subelements of the polytope. + */ + inline int getNumSubElements() { + return numSubElements; + } + + protected: + + /** + * Checks whether the elements of intPoints are really intersection points, + * i.e. lie on edges. + */ + bool checkIntPoints(); + + /** + * In 1-dimensional space the intersection of an element always produces + * two subelements. indexElVertInPol indicates which subelement to take. + * The resulting subelement is created by this routine. + */ + void createSubElementPolytopeIsSubElement1D(int indexElVertInPol); + + /** + * In 2-dimensional space the intersection of an element always produces + * a subelement. The same in 3-dimensional space, if the intersection has + * three intersection points. + * The resulting subelement is created by this routine. + */ + void createSubElementPolytopeIsSubElement2D3D(); + + /** + * Routine used in createSubElementsForPolytope(). + * + * The intersection point /ref intPoints[0] lies on an edge of element + * and isn't a vertex of element. Thus it lies in exactly two faces. + * In barycentric coordinates, lying in the face opposite to e.g. (0,1,0,0) + * means that the second barycentric coordinate is equal to zero. We + * give this face the index 1 (we start indexing by 0). + * In this routine we know already one face containing intPoints[0], + * namely indexFirstFace. The task of the routine is to get the + * second face. + */ + int getIndexSecondFaceIntPoint0(int indexFirstFace, int dim); + + /** + * If in 3-dimensional space the intersection of an element has four + * intersection points, the resulting polytope is no subelement, but it + * can be divided into three subelements. This is done by this routine. + */ + void createSubElementsForPolytope3D(int indexElVertInPol); + + protected: + + /** + * elInfo of the element containing the polytope + */ + const ElInfo *elInfo; + + /** + * Intersection points with the element in barycentric coordinates with + * respect to element + */ + VectorOfFixVecs<DimVec<double> > *intPoints; + + /** + * Number of intersection points + */ + int numIntPoints; + + /** + * List of the subelements of subpolytope + */ + std::vector<SubElInfo *> subElements; + + /** + * Number of subelements + */ + int numSubElements; + + /** + * Dimension of the polytope + */ + int dim; + }; +} #endif // AMDIS_SUBPOLYTOPE_H