diff --git a/doc/tutorial/ellipt.tex b/doc/tutorial/ellipt.tex
index 1905fb2dcc2037c6e1bda2d1a1153f29bf2e5f86..4f042e6ae5eb3c5ff5387dd0fab418b85be90341 100644
--- a/doc/tutorial/ellipt.tex
+++ b/doc/tutorial/ellipt.tex
@@ -189,7 +189,7 @@ The operators now are defined as follows:
 \begin{lstlisting}{}
   // ===== create matrix operator =====
   Operator matrixOperator(ellipt.getFeSpace());
-  matrixOperator.addSecondOrderTerm(new Laplace_SOT);
+  matrixOperator.addSecondOrderTerm(new Simple_SOT);
   ellipt.addMatrixOperator(matrixOperator, 0, 0);
 
   // ===== create rhs operator =====
@@ -201,7 +201,7 @@ The operators now are defined as follows:
 We define a matrix operator (left hand side operator) on the finite
 element space of the problem. The term $-\Delta u$ is added to
 it. Note that the minus sign isn't explicitly given, but implicitly
-contained in \verb+Laplace_SOT+. With \verb+addMatrixOperator+ we add
+contained in \verb+Simple_SOT+. With \verb+addMatrixOperator+ we add
 the operator to the stationary problem definition. The both zeros
 represent the position of the operator in the operator matrix. As we
 are about to define a scalar equation, there is only the 0/0 position
diff --git a/doc/tutorial/heat.tex b/doc/tutorial/heat.tex
index 11253f1d874c8296266f8fe7c6f67352c9eefc54..92ecc80033565d8871c7e393ca4ddf86687f5a0d 100644
--- a/doc/tutorial/heat.tex
+++ b/doc/tutorial/heat.tex
@@ -307,7 +307,7 @@ Now, we define the operators:
 
   // create laplace
   Operator A(heatSpace.getFeSpace());
-  A.addSecondOrderTerm(new Laplace_SOT);
+  A.addSecondOrderTerm(new Simple_SOT);
   A.setUhOld(heat.getOldSolution(0));
   if (*(heat.getThetaPtr()) != 0.0)
     heatSpace.addMatrixOperator(A, 0, 0, heat.getThetaPtr(), &one);
diff --git a/doc/tutorial/tutorial.pdf b/doc/tutorial/tutorial.pdf
index 738e7c5f45cd5558e3ea2f79a7c42998bc059efa..3a5f256646399dc4cf131cc4355118bf8a2b53b9 100644
Binary files a/doc/tutorial/tutorial.pdf and b/doc/tutorial/tutorial.pdf differ
diff --git a/doc/tutorial/vecellipt.tex b/doc/tutorial/vecellipt.tex
index e7a950bc6e5164149da0da68c0db7aacf23ab2f9..d3f799777757de6d424f17691366c75e6c42f386 100644
--- a/doc/tutorial/vecellipt.tex
+++ b/doc/tutorial/vecellipt.tex
@@ -80,7 +80,7 @@ The operator definitions for the first equation are:
 \begin{lstlisting}{}
   // ===== create operators =====
   Operator matrixOperator00(vecellipt.getFeSpace(0), vecellipt.getFeSpace(0));
-  matrixOperator00.addSecondOrderTerm(new Laplace_SOT);
+  matrixOperator00.addSecondOrderTerm(new Simple_SOT);
   vecellipt.addMatrixOperator(&matrixOperator00, 0, 0);
 
   int degree = vecellipt.getFeSpace(0)->getBasisFcts()->getDegree();