diff --git a/doc/tutorial/ellipt.tex b/doc/tutorial/ellipt.tex index 1905fb2dcc2037c6e1bda2d1a1153f29bf2e5f86..4f042e6ae5eb3c5ff5387dd0fab418b85be90341 100644 --- a/doc/tutorial/ellipt.tex +++ b/doc/tutorial/ellipt.tex @@ -189,7 +189,7 @@ The operators now are defined as follows: \begin{lstlisting}{} // ===== create matrix operator ===== Operator matrixOperator(ellipt.getFeSpace()); - matrixOperator.addSecondOrderTerm(new Laplace_SOT); + matrixOperator.addSecondOrderTerm(new Simple_SOT); ellipt.addMatrixOperator(matrixOperator, 0, 0); // ===== create rhs operator ===== @@ -201,7 +201,7 @@ The operators now are defined as follows: We define a matrix operator (left hand side operator) on the finite element space of the problem. The term $-\Delta u$ is added to it. Note that the minus sign isn't explicitly given, but implicitly -contained in \verb+Laplace_SOT+. With \verb+addMatrixOperator+ we add +contained in \verb+Simple_SOT+. With \verb+addMatrixOperator+ we add the operator to the stationary problem definition. The both zeros represent the position of the operator in the operator matrix. As we are about to define a scalar equation, there is only the 0/0 position diff --git a/doc/tutorial/heat.tex b/doc/tutorial/heat.tex index 11253f1d874c8296266f8fe7c6f67352c9eefc54..92ecc80033565d8871c7e393ca4ddf86687f5a0d 100644 --- a/doc/tutorial/heat.tex +++ b/doc/tutorial/heat.tex @@ -307,7 +307,7 @@ Now, we define the operators: // create laplace Operator A(heatSpace.getFeSpace()); - A.addSecondOrderTerm(new Laplace_SOT); + A.addSecondOrderTerm(new Simple_SOT); A.setUhOld(heat.getOldSolution(0)); if (*(heat.getThetaPtr()) != 0.0) heatSpace.addMatrixOperator(A, 0, 0, heat.getThetaPtr(), &one); diff --git a/doc/tutorial/tutorial.pdf b/doc/tutorial/tutorial.pdf index 738e7c5f45cd5558e3ea2f79a7c42998bc059efa..3a5f256646399dc4cf131cc4355118bf8a2b53b9 100644 Binary files a/doc/tutorial/tutorial.pdf and b/doc/tutorial/tutorial.pdf differ diff --git a/doc/tutorial/vecellipt.tex b/doc/tutorial/vecellipt.tex index e7a950bc6e5164149da0da68c0db7aacf23ab2f9..d3f799777757de6d424f17691366c75e6c42f386 100644 --- a/doc/tutorial/vecellipt.tex +++ b/doc/tutorial/vecellipt.tex @@ -80,7 +80,7 @@ The operator definitions for the first equation are: \begin{lstlisting}{} // ===== create operators ===== Operator matrixOperator00(vecellipt.getFeSpace(0), vecellipt.getFeSpace(0)); - matrixOperator00.addSecondOrderTerm(new Laplace_SOT); + matrixOperator00.addSecondOrderTerm(new Simple_SOT); vecellipt.addMatrixOperator(&matrixOperator00, 0, 0); int degree = vecellipt.getFeSpace(0)->getBasisFcts()->getDegree();