// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- // vi: set et ts=4 sw=2 sts=2: #ifndef DUNE_CURVED_SURFACE_GRID_TORUS_GRIDFUNCTION_HH #define DUNE_CURVED_SURFACE_GRID_TORUS_GRIDFUNCTION_HH #include <type_traits> #include <dune/common/math.hh> #include <dune/curvedsurfacegrid/gridfunctions/analyticgridfunction.hh> #include <dune/functions/common/defaultderivativetraits.hh> namespace Dune { // torus functor template< class T > struct TorusProjection { T R_; T r_; TorusProjection (T R, T r) : R_(R) , r_(r) {} // closest point projection FieldVector<T,3> operator()(FieldVector<T,3> x) const { using std::abs; FieldVector<T,3> x2{x[0], x[1], T(0)}; T norm2 = x2.two_norm(); assert(norm2 > std::numeric_limits<T>::epsilon()); FieldVector<T,3> c = x2 * (R_ / norm2); x2 = x - c; norm2 = x2.two_norm(); assert(norm2 > std::numeric_limits<T>::epsilon()); x = c + x2 * (r_ / norm2); assert(abs(phi(x)) < 10*std::numeric_limits<T>::epsilon()); return x; } T phi(FieldVector<T,3> const& x) const { using std::sqrt; T phi0 = sqrt(x[0]*x[0] + x[1]*x[1]) - R_; return phi0*phi0 + x[2]*x[2] - r_*r_; } FieldVector<T,3> normal (FieldVector<T,3> X) const { using std::sqrt; X = (*this)(X); T x = X[0], y = X[1], z = X[2]; // T x2y2_1_2 = sqrt(x*x + y*y); // assert(x2y2_1_2 > std::numeric_limits<T>::epsilon()); // return { x - 2*x/x2y2_1_2, y - 2*y/x2y2_1_2, z }; T x2 = x*x, y2 = y*y, z2 = z*z; auto factor1 = x2 + y2 + z2 - 5; auto factor2 = x2 + y2 + z2 + 3; auto factor1_2 = factor1*factor1; auto factor2_2 = factor2*factor2; auto div = sqrt(x2*factor1_2 + y2*factor1_2 + z2*factor2_2); return { x*factor1/div, y*factor1/div, z*factor2/div }; } T mean_curvature (FieldVector<T,3> X) const { using std::sqrt; X = (*this)(X); T x = X[0], y = X[1], z = X[2]; // T x2y2_1_2 = sqrt(x*x + y*y); // return -(3 - 2/x2y2_1_2)/2; T x2 = x*x, y2 = y*y, z2 = z*z; T x3 = x*x2,y3 = y*y2,z3 = z*z2; auto factor1 = x2 + y2 + z2 - 5; auto factor2 = x2 + y2 + z2 + 3; auto factor1_2 = factor1*factor1; auto factor2_2 = factor2*factor2; auto div = sqrt(x2*factor1_2 + y2*factor1_2 + z2*factor2_2); auto div2= power(div, 3); return -(2*x2/div + x*factor1*(-2*x3*factor1 - 2*x*y2*factor1 - 2*x*z2*factor2 - x*factor1_2)/div2 + 2*y2/div + y*factor1*(-2*x2*y*factor1 - 2*y3*factor1 - 2*y*z2*factor2 - y*factor1_2)/div2 + 2*z2/div + z*factor2*(-2*x2*z*factor1 - 2*y2*z*factor1 - 2*z3*factor2 - z*factor2_2)/div2 + 2*factor1/div + factor2/div) ; } //! surface area of the torus = 4*pi^2*r1*r2 T area () const { return 4*M_PI*M_PI*R_*r_; } }; //! construct a grid function representing a torus parametrization template< class Grid, class T > auto torusGridFunction (T R, T r) { return analyticGridFunction<Grid>(TorusProjection<T>{R,r}); } } // end namespace Dune #endif // DUNE_CURVED_SURFACE_GRID_TORUS_GRIDFUNCTION_HH