#include <dune/curvedsurfacegrid/surfacedistance/surfacedistance.hh> #include <iostream> #include <cmath> using namespace Dune::Curved; // ######################### // ## Geometry-Routines ## // ######################### //--------------------< coordinate_extrema_triangle > //returns in 'small_coord' the smallest coordinate of 'sm' in the given dimension and in //'big_coord' the biggest coordinate in the given dimension. Note: 'sm' has to be a triangle //in a 2d or 3d world. void coordinate_extrema_triangle(Mesh &m, Element &sm, int dimension, double &small_coord, double &big_coord){ if(m.vertices[sm.v[0]][dimension] <= m.vertices[sm.v[1]][dimension]){ if(m.vertices[sm.v[0]][dimension] <= m.vertices[sm.v[2]][dimension]){ small_coord = m.vertices[sm.v[0]][dimension]; if(m.vertices[sm.v[1]][dimension] >= m.vertices[sm.v[2]][dimension]) big_coord = m.vertices[sm.v[1]][dimension]; else big_coord = m.vertices[sm.v[2]][dimension]; }else{ small_coord = m.vertices[sm.v[2]][dimension]; big_coord = m.vertices[sm.v[1]][dimension]; } }else{ if(m.vertices[sm.v[1]][dimension] <= m.vertices[sm.v[2]][dimension]){ small_coord = m.vertices[sm.v[1]][dimension]; if(m.vertices[sm.v[0]][dimension] >= m.vertices[sm.v[2]][dimension]) big_coord = m.vertices[sm.v[0]][dimension]; else big_coord = m.vertices[sm.v[2]][dimension]; }else{ small_coord = m.vertices[sm.v[2]][dimension]; big_coord = m.vertices[sm.v[0]][dimension]; } } } //--------------------< distance_point_line_2d > //calculates the distance between a given point and the line segment between 'lin0' and 'lin1'. double distance_point_line_2d(const Vertex &point, const Vertex &lin0, const Vertex &lin1, Vertex &hit_vertex){ //the (complete) line through 'lin0' and 'lin1' is given by 'l = lin0 + t*g' with g as follows: double gx = lin1[0] - lin0[0]; double gy = lin1[1] - lin0[1]; //the normal-vector from 'point' to l is 'v = lin0 + t*g - point' for some t which is determined // by 'v*g = 0' double t = (-gx * (lin0[0] - point[0]) - gy * (lin0[1] - point[1])) / (gx * gx + gy * gy); //if the orthogonal projection of 'point' onto l is not on the given line segment then one of the //vertices 'lin0' or 'lin1' is the nearest point to 'point' if(t < 0){ //'lin0' is nearest hit_vertex[0] = lin0[0]; hit_vertex[1] = lin0[1]; }else if(t > 1){ //'lin1' is nearest hit_vertex[0] = lin1[0]; hit_vertex[1] = lin1[1]; }else{ //orthogonal projection is nearest hit_vertex[0] = lin0[0] + t * gx; hit_vertex[1] = lin0[1] + t * gy; } //calculate distance double dx = point[0] - hit_vertex[0]; double dy = point[1] - hit_vertex[1]; return sqrt(dx * dx + dy * dy); } //--------------------< point_in_triangle_generous_2d > bool point_in_triangle_generous_2d(const Vertex &p, const Vertex &a, const Vertex &b, const Vertex &c){ int i; Vertex v0, v1, v2; double dot00, dot01, dot02, dot11, dot12, invDenom, u, v; //compute direction vectors for(i = 0; i < 2; ++i) v0[i] = c[i] - a[i]; for(i = 0; i < 2; ++i) v1[i] = b[i] - a[i]; for(i = 0; i < 2; ++i) v2[i] = p[i] - a[i]; //compute dot products dot00 = v0[0] * v0[0] + v0[1] * v0[1]; //dot(v0, v0) dot01 = v0[0] * v1[0] + v0[1] * v1[1]; //dot(v0, v1) dot02 = v0[0] * v2[0] + v0[1] * v2[1]; //dot(v0, v2) dot11 = v1[0] * v1[0] + v1[1] * v1[1]; //dot(v1, v1) dot12 = v1[0] * v2[0] + v1[1] * v2[1]; //dot(v1, v2) //compute barycentric coordinates invDenom = 1.0 / (dot00 * dot11 - dot01 * dot01); u = (dot11 * dot02 - dot01 * dot12) * invDenom; v = (dot00 * dot12 - dot01 * dot02) * invDenom; //check if point is in triangle return (u >= -epsilon) && (v >= -epsilon) && (u + v - 1.0 <= epsilon); } //--------------------< distance_point_line_3d > //calculates the distance between a given point and the line segment between 'lin0' and 'lin1'. double distance_point_line_3d(const Vertex &point, const Vertex &lin0, const Vertex &lin1, Vertex &hit_vertex){ //the (complete) line through 'lin0' and 'lin1' is given by 'l = lin0 + t*g' with g as follows: double gx = lin1[0] - lin0[0]; double gy = lin1[1] - lin0[1]; double gz = lin1[2] - lin0[2]; //the normal-vector from 'point' to l is 'v = lin0 + t*g - point' for some t which is determined // by 'v*g = 0' double t = (-gx * (lin0[0] - point[0]) - gy * (lin0[1] - point[1]) - gz * (lin0[2] - point[2])) / (gx * gx + gy * gy + gz * gz); //if the orthogonal projection of 'point' onto l is not on the given line segment then one of the //vertices 'lin0' or 'lin1' is the nearest point to 'point' if(t < 0){ //'lin0' is nearest hit_vertex[0] = lin0[0]; hit_vertex[1] = lin0[1]; hit_vertex[2] = lin0[2]; }else if(t > 1){ //'lin1' is nearest hit_vertex[0] = lin1[0]; hit_vertex[1] = lin1[1]; hit_vertex[2] = lin1[2]; }else{ //orthogonal projection is nearest hit_vertex[0] = lin0[0] + t * gx; hit_vertex[1] = lin0[1] + t * gy; hit_vertex[2] = lin0[2] + t * gz; } //calculate distance double dx = point[0] - hit_vertex[0]; double dy = point[1] - hit_vertex[1]; double dz = point[2] - hit_vertex[2]; return sqrt(dx * dx + dy * dy + dz * dz); } //--------------------< intersection_line_line_with_intersection_3d > bool intersection_line_line_with_intersection_3d(const Vertex &p1, const Vertex &p2, const Vertex &p3, const Vertex &p4, Vertex &intersection){ Vertex p13, p43, p21; double d1343, d4321, d1321, d4343, d2121; double numer, denom; double mua, mub; int ci = -1; p13[0] = p1[0] - p3[0]; p13[1] = p1[1] - p3[1]; p13[2] = p1[2] - p3[2]; p43[0] = p4[0] - p3[0]; p43[1] = p4[1] - p3[1]; p43[2] = p4[2] - p3[2]; p21[0] = p2[0] - p1[0]; p21[1] = p2[1] - p1[1]; p21[2] = p2[2] - p1[2]; //test for collinearity if(fabs(p21[1] * p43[2] - p21[2] * p43[1]) < epsilon && fabs(p21[2] * p43[0] - p21[0] * p43[2]) < epsilon && fabs(p21[0] * p43[1] - p21[1] * p43[0]) < epsilon){ //lines are collinear; now test for an intersection double x11, x12, x21, x22, y11, y12, y21, y22, z11, z12, z21, z22; if(p1[0] <= p2[0]){ x11 = p1[0]; x12 = p2[0]; }else{ x11 = p2[0]; x12 = p1[0]; } if(p1[1] <= p2[1]){ y11 = p1[1]; y12 = p2[1]; }else{ y11 = p2[1]; y12 = p1[1]; } if(p1[2] <= p2[2]){ z11 = p1[2]; z12 = p2[2]; }else{ z11 = p2[2]; z12 = p1[2]; } if(p3[0] <= p4[0]){ x21 = p3[0]; x22 = p4[0]; }else{ x21 = p4[0]; x22 = p3[0]; } if(p3[1] <= p4[1]){ y21 = p3[1]; y22 = p4[1]; }else{ y21 = p4[1]; y22 = p3[1]; } if(p3[2] <= p4[2]){ z21 = p3[2]; z22 = p4[2]; }else{ z21 = p4[2]; z22 = p3[2]; } if(x11 <= x22 && x12 >= x21 && y11 <= y22 && y12 >= y21 && z11 <= z22 && z12 >= z21){ if(fabs(p21[0]) > epsilon){ mua = -p13[0] / p21[0]; if(fabs(p1[1] + p21[1] * mua - p3[1]) < epsilon && fabs(p1[2] + p21[2] * mua - p3[2]) < epsilon) ci = 0; }else if(fabs(p21[1]) > epsilon){ mua = -p13[1] / p21[1]; if(fabs(p1[0] + p21[0] * mua - p3[0]) < epsilon && fabs(p1[2] + p21[2] * mua - p3[2]) < epsilon) ci = 1; }else{ mua = -p13[2] / p21[2]; if(fabs(p1[0] + p21[0] * mua - p3[0]) < epsilon && fabs(p1[1] + p21[1] * mua - p3[1]) < epsilon) ci = 2; } if(ci != -1){ //determine best intersection-point //priority is p3 > p4 > p3 > p2 (one of these three points must be part of both line //segments. p3 is only priorized over p4 if it is not a vertex of the first line segment if(mua > epsilon && mua - 1 < -epsilon){ intersection[0] = p3[0]; intersection[1] = p3[1]; intersection[2] = p3[2]; }else{ mub = (p4[ci] - p1[ci]) / p21[ci]; if(mub > -epsilon && mub - 1 < epsilon){ intersection[0] = p4[0]; intersection[1] = p4[1]; intersection[2] = p4[2]; }else if(mua > -epsilon && mua-1 < epsilon){ intersection[0] = p3[0]; intersection[1] = p3[1]; intersection[2] = p3[2]; }else{ intersection[0] = p2[0]; intersection[1] = p2[1]; intersection[2] = p2[2]; } } return true; } } return false; } d1343 = p13[0] * p43[0] + p13[1] * p43[1] + p13[2] * p43[2]; d4321 = p43[0] * p21[0] + p43[1] * p21[1] + p43[2] * p21[2]; d1321 = p13[0] * p21[0] + p13[1] * p21[1] + p13[2] * p21[2]; d4343 = p43[0] * p43[0] + p43[1] * p43[1] + p43[2] * p43[2]; d2121 = p21[0] * p21[0] + p21[1] * p21[1] + p21[2] * p21[2]; denom = d2121 * d4343 - d4321 * d4321; if(fabs(denom) < epsilon) return false; numer = d1343 * d4321 - d1321 * d4343; mua = numer / denom; mub = (d1343 + d4321 * mua) / d4343; if(mua < -epsilon || mua - 1 > epsilon || mub < -epsilon || mub - 1 > epsilon) return false; //determine potential intersection-point intersection[0] = p1[0] + mua * p21[0]; intersection[1] = p1[1] + mua * p21[1]; intersection[2] = p1[2] + mua * p21[2]; //check if this really is an intersection if(fabs(intersection[0] - p3[0] - mub * p43[0]) < epsilon && fabs(intersection[1] - p3[1] - mub * p43[1]) < epsilon && fabs(intersection[2] - p3[2] - mub * p43[2]) < epsilon){ return true; }else{ return false; } } //--------------------< intersection_line_triangle_3d > //This is a modified version of Softsurfers line-triangle-intersection-routine. The original //routine comes with the following copyright notice: // Copyright 2001, softSurfer (www.softsurfer.com) // This code may be freely used and modified for any purpose // providing that this copyright notice is included with it. // SoftSurfer makes no warranty for this code, and cannot be held // liable for any real or imagined damage resulting from its use. // Users of this code must verify correctness for their application. //calculates the intersection point of a line segment and a triangle if it exists // input: a line segment (lin0, lin1), and a triangle (tri0, tri1, tri2) // output: sol = intersection point (if it exists) // return: 0 disjoint // 1 intersection inside triangle // 2,3,4 intersection in edge of triangle (edge_index is 0, 1, 2 respectively) int intersection_line_triangle_3d(const Vertex &tri0, const Vertex &tri1, const Vertex &tri2, const Vertex &lin0, const Vertex &lin1, Vertex &sol){ Vertex hit_vertex; Vertex u, v, n; //triangle vectors Vertex dir, w0, w; //ray vectors double r, a, b; //params to calc ray-plane intersect int i, e; double epsilon2 = 100 * epsilon; double uu, uv, vv, wu, wv, D; double s, t; Vertex distances; //get triangle edge vectors and plane normal for(i = 0; i < 3; i++) u[i] = tri1[i] - tri0[i]; for(i = 0; i < 3; i++) v[i] = tri2[i] - tri0[i]; n[0] = u[1] * v[2] - u[2] * v[1]; n[1] = u[2] * v[0] - u[0] * v[2]; n[2] = u[0] * v[1] - u[1] *v[0]; if(fabs(n[0]) < epsilon && fabs(n[1]) < epsilon && fabs(n[2]) < epsilon){ if(intersection_line_line_with_intersection_3d(tri0, tri1, lin0, lin1, sol)) return 4; else if(intersection_line_line_with_intersection_3d(tri1, tri2, lin0, lin1, sol)) return 2; else if(intersection_line_line_with_intersection_3d(tri2, tri0, lin0, lin1, sol)) return 3; } for(i = 0; i < 3; i++) dir[i] = lin1[i] - lin0[i]; //line direction vector for(i = 0; i < 3; i++) w0[i] = lin0[i] - tri0[i]; a = -(n[0] * w0[0] + n[1] * w0[1] + n[2] * w0[2]); b = n[0] * dir[0] + n[1] * dir[1] + n[2] * dir[2]; if(fabs(b) < epsilon){ //ray is parallel to triangle plane if(fabs(a) < epsilon){ //test whether one of the line's vertices lies inside the triangle for(e = 0; e < 2; e++){ if(e == 0) for(i = 0; i < 3; i++) sol[i] = lin0[i]; else for(i = 0; i < 3; i++) sol[i] = lin1[i]; uu = u[0] * u[0] + u[1] * u[1] + u[2] * u[2]; uv = u[0] * v[0] + u[1] * v[1] + u[2] * v[2]; vv = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; for(i = 0; i < 3; i++) w[i] = sol[i] - tri0[i]; wu = w[0] * u[0] + w[1] * u[1] + w[2] * u[2]; wv = w[0] * v[0] + w[1] * v[1] + w[2] * v[2]; D = uv * uv - uu * vv; s = (uv * wv - vv * wu) / D; if (s < -epsilon || s - 1.0 > epsilon) continue; //sol is outside triangle t = (uv * wu - uu * wv) / D; if (t < -epsilon || (s + t - 1.0) > epsilon) continue; //sol is outside triangle distances[0] = distance_point_line_3d(sol, tri0, tri1, hit_vertex); distances[1] = distance_point_line_3d(sol, tri1, tri2, hit_vertex); distances[2] = distance_point_line_3d(sol, tri2, tri0, hit_vertex); if(distances[0] > epsilon2 && distances[1] > epsilon2 && distances[2] > epsilon2){ return 1; } } //test whether ray intersects one of the triangle's edges if(intersection_line_line_with_intersection_3d(tri0, tri1, lin0, lin1, sol)) return 4; else if(intersection_line_line_with_intersection_3d(tri1, tri2, lin0, lin1, sol)) return 2; else if(intersection_line_line_with_intersection_3d(tri2, tri0, lin0, lin1, sol)) return 3; } return 0; //ray disjoint from plane } //get intersection point of ray with triangle plane r = a / b; if(r < -epsilon || r - 1.0 > epsilon){ return 0; //ray goes away from triangle => no intersection } for(i = 0; i < 3; i++) sol[i] = lin0[i] + r * dir[i]; //is sol inside triangle? uu = u[0] * u[0] + u[1] * u[1] + u[2] * u[2]; uv = u[0] * v[0] + u[1] * v[1] + u[2] * v[2]; vv = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; for(i = 0; i < 3; i++) w[i] = sol[i] - tri0[i]; wu = w[0] * u[0] + w[1] * u[1] + w[2] * u[2]; wv = w[0] * v[0] + w[1] * v[1] + w[2] * v[2]; D = uv * uv - uu * vv; //get and test parametric coords s = (uv * wv - vv * wu) / D; if (s < -epsilon || s - 1.0 > epsilon) return 0; //sol is outside triangle t = (uv * wu - uu * wv) / D; if (t < -epsilon || (s + t - 1.0) > epsilon) return 0; //sol is outside triangle //calculate distance of sol with each edge of the triangle distances[0] = distance_point_line_3d(sol, tri0, tri1, hit_vertex); if(distances[0] < epsilon2) return 4; distances[1] = distance_point_line_3d(sol, tri1, tri2, hit_vertex); if(distances[1] < epsilon2) return 2; distances[2] = distance_point_line_3d(sol, tri2, tri0, hit_vertex); if(distances[2] < epsilon2) return 3; return 1; //sol is inside triangle } //--------------------< distance_point_triangle_3d > //calculates the distance between a given 'point' and the triangle given by 'tri0', 'tri1', 'tri2'. double distance_point_triangle_3d(const Vertex &point, const Vertex &tri0, const Vertex &tri1, const Vertex &tri2, Vertex &hit_vertex){ //triangle lies in plane 'p = tri0 + u*g + v*h', where g and h are defined as follows: double gx = tri1[0] - tri0[0]; double gy = tri1[1] - tri0[1]; double gz = tri1[2] - tri0[2]; double hx = tri2[0] - tri0[0]; double hy = tri2[1] - tri0[1]; double hz = tri2[2] - tri0[2]; //a vector from 'point' to p can be described by 'l = tri0 + u*g + v*h - point' and since we //search the distance we need such a vector that is orthogonal to p. Thus 'l*g = 0' and 'l*h = 0'. //We get a system of two equations of the form: //a1*u + b1*v = c1 //b1*u + b2*v = c2 //with a1, b1, b2, c1, c2 as follows: double b1 = gx * hx + gy * hy + gz * hz; double c2 = -hx * (tri0[0] - point[0]) - hy * (tri0[1] - point[1]) - hz * (tri0[2] - point[2]); double b2 = hx * hx + hy * hy + hz * hz; double c1 = -gx * (tri0[0] - point[0]) - gy * (tri0[1] - point[1]) - gz * (tri0[2] - point[2]); double a1 = gx * gx + gy * gy + gz * gz; //solve the system: double u, v; if(fabs(b1) < epsilon){ v = c2 / b2; u = c1 / a1; }else{ v = (c1 * b1 - c2 * a1) / (b1 * b1 - b2 * a1); u = (c1 - v * b1) / a1; } //now test whether the orthogonal projection of 'point' onto p lies inside the triangle double distance; if(u >= 0 && v >= 0 && u + v <= 1){ //yes, inside. The length of the normal-vector is the desired distance double fx = hit_vertex[0] = tri0[0] + u * gx + v * hx; double fy = hit_vertex[1] = tri0[1] + u * gy + v * hy; double fz = hit_vertex[2] = tri0[2] + u * gz + v * hz; fx -= point[0]; fy -= point[1]; fz -= point[2]; distance = sqrt(fx * fx + fy * fy + fz * fz); }else{ //no, not inside. The desired distance is the distance to one of the triangle-edges distance = distance_point_line_3d(point, tri0, tri1, hit_vertex); Vertex current_hit_vertex; double current_distance = distance_point_line_3d(point, tri1, tri2, current_hit_vertex); if(current_distance < distance){ distance = current_distance; hit_vertex = current_hit_vertex; } current_distance = distance_point_line_3d(point, tri2, tri0, current_hit_vertex); if(current_distance < distance){ distance = current_distance; hit_vertex = current_hit_vertex; } } return distance; } // ########################## // ## BackGrid - General ## // ########################## //--------------------< static members for configuration > int BackGrid::segmentation_degree = -1; //-1 means automatic switching dependent on mesh-size //--------------------< construcor > BackGrid::BackGrid(Mesh &mesh, double expansion_width, bool no_scaling):mesh(mesh){ int x, y; Vertex dist; int seg_deg; current_operation_index = 0; //automatically determine segmentation degree if desired if(segmentation_degree <= 0){ if(mesh.elements.size() < 20000) seg_deg = 64; else if(mesh.elements.size() < 800000) seg_deg = 128; else seg_deg = 256; }else{ seg_deg = segmentation_degree; } //calculate minimal and maximal coordinates of backgrid mesh.determine_coordinate_extrema(minc, maxc); if(expansion_width < 0.0) expansion_width = coarse_epsilon; for(y = 0; y < mesh.dim_of_world; ++y){ minc[y] -= expansion_width; maxc[y] += expansion_width; } //calculate sizes of segments if(no_scaling){ //boxes must be cubes (all edges of same length) double maxdist = 0.0; y = 0; for(x = 0; x < mesh.dim_of_world; ++x){ dist[x] = maxc[x] - minc[x]; if(dist[x] > maxdist){ maxdist = dist[x]; y = x; } } for(x = 0; x < mesh.dim_of_world; ++x){ seg_size[x] = maxdist / (double)(seg_deg); segments[x] = int((dist[x] / maxdist) * seg_deg); if(dist[x] < dist[y]) ++segments[x]; } segments[y] = seg_deg; min_seg_size = seg_size[0]; }else{ //boxes need not be cubes double distpower = 1.0; min_seg_size = 9e100; for(x = 0; x < mesh.dim_of_world; ++x){ dist[x] = maxc[x] - minc[x]; if(dist[x] > epsilon && dist[x] < min_seg_size) min_seg_size = dist[x]; } for(x = 0; x < mesh.dim_of_world; ++x){ if(dist[x] <= epsilon) dist[x] = min_seg_size; else dist[x] = 1.0 / dist[x]; distpower *= dist[x]; } distpower = pow(distpower * pow(double(seg_deg), mesh.dim_of_world), 1.0 / mesh.dim_of_world); double tmp_segments[3]; int latest_zero_dimension = 0, latest_non_zero_dimension = 0, num_zero_dimensions = 0; for(x = 0; x < mesh.dim_of_world; ++x){ tmp_segments[x] = int(distpower / dist[x]); if(tmp_segments[x] < 1.0){ latest_zero_dimension = x; ++num_zero_dimensions; }else{ latest_non_zero_dimension = x; } } //corrections for zero-dimensions: if(mesh.dim_of_world == 2){ if(num_zero_dimensions > 0){ double factor = pow(seg_deg, 2) / tmp_segments[latest_non_zero_dimension] - 1; tmp_segments[latest_zero_dimension] = 1.0; tmp_segments[latest_non_zero_dimension] = (factor + 1.0) * tmp_segments[latest_non_zero_dimension]; } }else if(mesh.dim_of_world == 3){ if(num_zero_dimensions == 1){ int other_dimension = (latest_zero_dimension + 1) % 2; if(other_dimension == latest_non_zero_dimension) other_dimension = (other_dimension + 1) % 2; double factor = sqrt(pow(seg_deg, 3) / (tmp_segments[latest_non_zero_dimension] * tmp_segments[other_dimension])) - 1; tmp_segments[latest_zero_dimension] = 1.0; tmp_segments[latest_non_zero_dimension] = (factor + 1.0) * tmp_segments[latest_non_zero_dimension]; tmp_segments[other_dimension] = (factor + 1.0) * tmp_segments[other_dimension]; }else if(num_zero_dimensions == 2){ int other_dimension = (latest_zero_dimension + 1) % 2; if(other_dimension == latest_non_zero_dimension) other_dimension = (other_dimension + 1) % 2; double factor = pow(seg_deg, 3) / tmp_segments[latest_non_zero_dimension] - 1; tmp_segments[latest_zero_dimension] = 1.0; tmp_segments[other_dimension] = 1.0; tmp_segments[latest_non_zero_dimension] = (factor + 1.0) * tmp_segments[latest_non_zero_dimension]; } } for(x = 0; x < mesh.dim_of_world; ++x){ segments[x] = tmp_segments[x]; if(segments[x] <= 0) segments[x] = 1; } min_seg_size = 9e100; for(x = 0; x < mesh.dim_of_world; ++x){ seg_size[x] = (maxc[x] - minc[x]) / (double)segments[x]; if(min_seg_size > seg_size[x]) min_seg_size = seg_size[x]; } } //create data structure for backgrid if(mesh.dim_of_world == 2) segments[2] = 1; grid.resize(segments[0]); for(x = 0; x < segments[0]; ++x){ grid[x].resize(segments[1]); for(y = 0; y < segments[1]; ++y){ grid[x][y].resize(segments[2]); } } //attach mesh if(mesh.dim_of_world == 2){ attach_mesh_2d(); }else if(mesh.dim_of_world == 3){ attach_mesh_3d(); } } //--------------------< debug_output_dimensions > void BackGrid::debug_output_dimensions(){ int x, y, z, sum = 0, cnt = 0; for(x = 0; x < segments[0]; ++x){ for(y = 0; y < segments[1]; ++y){ for(z = 0; z < segments[2]; ++z){ sum += grid[x][y][z].size(); ++cnt; } } } std::cout << "\nbackgrid:" << std::endl; std::cout << "dimensions: " << minc << ", " << maxc << std::endl; std::cout << "segment-count: " << segments[0] << " x " << segments[1] << " x " << segments[2] << std::endl; std::cout << "segment-size: " << seg_size[0] << " x " << seg_size[1] << " x " << seg_size[2] << std::endl; std::cout << "average entries: " << double(sum) / cnt << std::endl; std::cout << "total entries: " << sum << "\n" << std::endl; } // ############################ // ## BackGrid - 2D Worlds ## // ############################ //--------------------< attach_mesh_2d > void BackGrid::attach_mesh_2d(){ int x, y, cnt = 0; double cx1, cx2, cy1, cy2, vx1, vx2, vy1, vy2, s; for(std::list<Element>::iterator it = mesh.elements.begin(), it_end = mesh.elements.end(); it != it_end; ++it){ it->operation_index = 0; //determine leftmost and rightmost vertex of 'it' if(mesh.vertices[it->v[0]][0] < mesh.vertices[it->v[1]][0]){ vx1 = mesh.vertices[it->v[0]][0]; vx2 = mesh.vertices[it->v[1]][0]; vy1 = mesh.vertices[it->v[0]][1]; vy2 = mesh.vertices[it->v[1]][1]; }else{ vx1 = mesh.vertices[it->v[1]][0]; vx2 = mesh.vertices[it->v[0]][0]; vy1 = mesh.vertices[it->v[1]][1]; vy2 = mesh.vertices[it->v[0]][1]; } //determine for every segment whether the current element intersects it for(y = 0; y < segments[1]; ++y){ for(x = 0; x < segments[0]; ++x){ if(vx1 - minc[0] - (x + 1) * seg_size[0] <= epsilon && vx2 - minc[0] - x * seg_size[0] >= -epsilon){ if(fabs(vx2 - vx1) < epsilon){ //element is a vertical line-segment cy1 = vy1; cy2 = vy2; }else{ //element is not vertical; determine its gradient s = (vy2 - vy1) / (vx2 - vx1); cx1 = ((vx1 > minc[0] + x * seg_size[0])? vx1 : minc[0] + x * seg_size[0]); cx2 = ((vx2 < minc[0] + (x + 1) * seg_size[0])? vx2 : minc[0] + (x + 1) * seg_size[0]); cy1 = (cx1 - vx1) * s + vy1; cy2 = (cx2 - vx1) * s + vy1; } //test whether y-coordinates of reduced element still lie in the y-range of the segment if((cy1 - minc[1] - y * seg_size[1] >= -epsilon && cy2 - minc[1] - (y + 1) * seg_size[1] <= epsilon) || (cy1 - minc[1] - (y + 1) * seg_size[1] <= epsilon && cy2 - minc[1] - y * seg_size[1] >= -epsilon)){ //'it' intersects the current segment; add it to the corresponding structure grid[x][y][0].push_back(&*it); cnt++; } } } } } } //--------------------< test_distances_2d > //tests whether one of the surface elements in the segment with indices 'ix', 'iy' has a distance to //'destination' which is smaller than 'min_distance'. If so, 'min_distance' is set to the new smallest //distance. void BackGrid::test_distances_2d(const Vertex &destination, int ix, int iy, double &min_distance, Vertex &hit_vertex){ std::list<Element*> &lst = grid[ix][iy][0]; for(std::list<Element*>::iterator it = lst.begin(), it_end = lst.end(); it != it_end; ++it){ Element &e = **it; if(e.operation_index != current_operation_index){ e.operation_index = current_operation_index; Vertex current_hit_vertex; double distance = distance_point_line_2d(destination, mesh.vertices[e.v[0]], mesh.vertices[e.v[1]], current_hit_vertex); if(distance < min_distance){ min_distance = distance; hit_vertex = current_hit_vertex; } } } } //--------------------< distance_to_surface_2d > double BackGrid::distance_to_surface_2d(const Vertex &destination, Vertex &hit_vertex){ //traverse through segments of the backgrid in a spiral around 'destination' int sx1 = (int)((destination[0] - minc[0]) / seg_size[0]); if(sx1 >= segments[0]) sx1 = segments[0] - 1; if(sx1 < 0) sx1 = 0; int sx2 = segments[0] - sx1 - 1; if(sx1 > sx2) sx2 = sx1; int sy1 = (int)((destination[1] - minc[1]) / seg_size[1]); if(sy1 >= segments[1]) sy1 = segments[1] - 1; if(sy1 < 0) sy1 = 0; int sy2 = segments[1] - sy1 - 1; if(sy1 > sy2) sy2 = sy1; if(sx2 > sy2) sy2 = sx2; //now sy2 stores the maximal number of rectangles around 'destination' that have to be //considered. ++current_operation_index; //check the segment containing 'destination' for nearby surface mesh elements double min_distance = 9e100; test_distances_2d(destination, sx1, sy1, min_distance, hit_vertex); //successively check segments around 'destination' with increasing distance to 'destination' for(int i = 1; i <= sy2; ++i){ int ix, iy; int p1 = sx1 - i; if(p1 < 0) p1 = 0; int p2 = sx1 + i; if(p2 >= segments[0]) p2 = segments[0]-1; iy = sy1 - i; if(iy >= 0){ for(ix = p1; ix <= p2; ++ix){ test_distances_2d(destination, ix, iy, min_distance, hit_vertex); } } iy = sy1 + i; if(iy < segments[1]){ for(ix = p1; ix <= p2; ++ix){ test_distances_2d(destination, ix, iy, min_distance, hit_vertex); } } p1 = sy1 - i + 1; if(p1 < 0) p1 = 0; p2 = sy1 + i - 1; if(p2 >= segments[1]) p2 = segments[1]-1; ix = sx1 - i; if(ix >= 0){ for(iy = p1; iy <= p2; ++iy){ test_distances_2d(destination, ix, iy, min_distance, hit_vertex); } } ix = sx1 + i; if(ix < segments[0]){ for(iy = p1; iy <= p2; ++iy){ test_distances_2d(destination, ix, iy, min_distance, hit_vertex); } } if(min_distance < i * min_seg_size) break; } return min_distance; } // ############################ // ## BackGrid - 3D Worlds ## // ############################ //--------------------< attach_mesh_3d > void BackGrid::attach_mesh_3d(){ int x, y, z, i, j; double vx1, vx2, vy1, vy2, vz1, vz2; //sorted coordinates of cube surrounding 'sm' double sx1, sx2, sy1, sy2, sz1, sz2; //coordinates of the segment int cx1, cx2, cy1, cy2, cz1, cz2; //starting and ending indices of relevant segments double ex1, ex2, ey1, ey2, ez1, ez2; //coordinates of reduced edge double grad_z_for_x, grad_y_for_x, grad_z_for_y; //gradients double tmp_i0, tmp_j0, tmp_i1, tmp_j1, tmp_i2, tmp_j2; //temporal variables for gradient-calc. bool edge_intersection; bool singular_x, singular_y, singular_z; Vertex diagonal_beg[4], diagonal_end[4]; Vertex sol; #define DEBUG_OUTPUT_BACKGRID 0 #if DEBUG_OUTPUT_BACKGRID != 0 std::vector<std::vector<std::vector<short int> > > z_bt; z_bt.resize(segments[0]); for(x = 0; x < segments[0]; ++x){ z_bt[x].resize(segments[1]); for(y = 0; y < segments[1]; ++y){ z_bt[x][y].resize(segments[2]); for(z = 0; z < segments[2]; ++z) z_bt[x][y][z] = 0; } } #endif for(std::list<Element>::iterator it = mesh.elements.begin(), it_end = mesh.elements.end(); it != it_end; ++it){ it->operation_index = 0; //determine coordinates of the minimal axis-parallel cube surrounding 'it' coordinate_extrema_triangle(mesh, *it, 0, vx1, vx2); coordinate_extrema_triangle(mesh, *it, 1, vy1, vy2); coordinate_extrema_triangle(mesh, *it, 2, vz1, vz2); //determine the segments intersected by that cube cx1 = (int)((vx1 - minc[0]) / seg_size[0]); if(cx1 >= segments[0]) cx1 = segments[0] - 1; cx2 = (int)((vx2 - minc[0]) / seg_size[0]); if(cx2 >= segments[0]) cx2 = segments[0] - 1; cy1 = (int)((vy1 - minc[1]) / seg_size[1]); if(cy1 >= segments[1]) cy1 = segments[1] - 1; cy2 = (int)((vy2 - minc[1]) / seg_size[1]); if(cy2 >= segments[1]) cy2 = segments[1] - 1; cz1 = (int)((vz1 - minc[2]) / seg_size[2]); if(cz1 >= segments[2]) cz1 = segments[2] - 1; cz2 = (int)((vz2 - minc[2]) / seg_size[2]); if(cz2 >= segments[2]) cz2 = segments[2] - 1; //test for all these segments if an intersection with 'it' occurs for(z = cz1; z <= cz2; ++z){ for(y = cy1; y <= cy2; ++y){ for(x = cx1; x <= cx2; ++x){ //get coordinates of the current segment sx1 = x * seg_size[0] + minc[0]; sx2 = sx1 + seg_size[0]; sy1 = y * seg_size[1] + minc[1]; sy2 = sy1 + seg_size[1]; sz1 = z * seg_size[2] + minc[2]; sz2 = sz1 + seg_size[2]; //test whether one of the edges of 'it' intersects the current segment edge_intersection = false; for(i = 0; i < 3; ++i){ j = (i + 1) % 3; tmp_i0 = mesh.vertices[it->v[i]][0]; tmp_j0 = mesh.vertices[it->v[j]][0]; tmp_i1 = mesh.vertices[it->v[i]][1]; tmp_j1 = mesh.vertices[it->v[j]][1]; tmp_i2 = mesh.vertices[it->v[i]][2]; tmp_j2 = mesh.vertices[it->v[j]][2]; //y- and z-gradient for x: if(fabs(tmp_i0 - tmp_j0) < epsilon){ grad_y_for_x = 0.0; grad_z_for_x = 0.0; if(tmp_i0 < sx1 || tmp_i0 > sx2) continue; }else{ grad_y_for_x = (tmp_i1 - tmp_j1) / (tmp_i0 - tmp_j0); grad_z_for_x = (tmp_i2 - tmp_j2) / (tmp_i0 - tmp_j0); } //z-gradient for y: if(fabs(tmp_i1 - tmp_j1) < epsilon){ grad_z_for_y = 0.0; if(tmp_i1 < sy1 || tmp_i1 > sy2) continue; }else{ grad_z_for_y = (tmp_i2 - tmp_j2) / (tmp_i1 - tmp_j1); } //calculate reduction of current edge to the x-range of the current segment if(tmp_i0 <= tmp_j0){ ex1 = tmp_i0; ey1 = tmp_i1; ez1 = tmp_i2; ex2 = tmp_j0; ey2 = tmp_j1; ez2 = tmp_j2; }else{ ex1 = tmp_j0; ey1 = tmp_j1; ez1 = tmp_j2; ex2 = tmp_i0; ey2 = tmp_i1; ez2 = tmp_i2; } if(ex1 > sx2 || ex2 < sx1) continue; if(ex1 < sx1){ ey1 += (sx1 - ex1) * grad_y_for_x; ez1 += (sx1 - ex1) * grad_z_for_x; ex1 = sx1; } if(ex2 > sx2){ ey2 += (sx2 - ex2) * grad_y_for_x; ez2 += (sx2 - ex2) * grad_z_for_x; ex2 = sx2; } //calculate reduction of current edge to the y-range of the current segment if(ey1 <= ey2){ if(ey1 > sy2 || ey2 < sy1) continue; if(ey1 < sy1){ ez1 += (sy1 - ey1) * grad_z_for_y; ey1 = sy1; } if(ey2 > sy2){ ez2 += (sy2 - ey2) * grad_z_for_y; ey2 = sy2; } }else{ if(ey2 > sy2 || ey1 < sy1) continue; if(ey2 < sy1){ ez2 += (sy1 - ey2) * grad_z_for_y; ey2 = sy1; } if(ey1 > sy2){ ez1 += (sy2 - ey1) * grad_z_for_y; ey1 = sy2; } } //test whether z-coordinates of the reduced edge still lie in the z-range of the segment if((ez1 >= sz1 && ez2 <= sz2) || (ez1 <= sz2 && ez2 >= sz1)){ //'it' intersects the current segment; add it to the corresponding structure edge_intersection = true; grid[x][y][z].push_back(&*it); #if DEBUG_OUTPUT_BACKGRID != 0 z_bt[x][y][z] = 1; #endif break; } } //if no edge of 'it' intersects the current segment then test whether one of the diagonals of //the segment intersects 'it' if(!edge_intersection){ Vertex p, a, b, c; //define diagonals diagonal_beg[0][0] = sx1; diagonal_beg[0][1] = sy1; diagonal_beg[0][2] = sz1; diagonal_end[0][0] = sx2; diagonal_end[0][1] = sy2; diagonal_end[0][2] = sz2; diagonal_beg[1][0] = sx2; diagonal_beg[1][1] = sy1; diagonal_beg[1][2] = sz1; diagonal_end[1][0] = sx1; diagonal_end[1][1] = sy2; diagonal_end[1][2] = sz2; diagonal_beg[2][0] = sx2; diagonal_beg[2][1] = sy2; diagonal_beg[2][2] = sz1; diagonal_end[2][0] = sx1; diagonal_end[2][1] = sy1; diagonal_end[2][2] = sz2; diagonal_beg[3][0] = sx1; diagonal_beg[3][1] = sy2; diagonal_beg[3][2] = sz1; diagonal_end[3][0] = sx2; diagonal_end[3][1] = sy1; diagonal_end[3][2] = sz2; //check whether 'it' is singular in some dimension singular_x = fabs(vx1 - vx2) < epsilon; singular_y = fabs(vy1 - vy2) < epsilon; singular_z = fabs(vz1 - vz2) < epsilon; //check intersections for(j = 0; j < 4; ++j){ //test whether one of the end-points of current diagonal lies inside the triangle if(singular_x){ if(fabs(diagonal_beg[j][0] - vx1) < epsilon){ p[0] = diagonal_beg[j][1]; p[1] = diagonal_beg[j][2]; a[0] = mesh.vertices[it->v[0]][1]; a[1] = mesh.vertices[it->v[0]][2]; b[0] = mesh.vertices[it->v[1]][1]; b[1] = mesh.vertices[it->v[1]][2]; c[0] = mesh.vertices[it->v[2]][1]; c[1] = mesh.vertices[it->v[2]][2]; if(point_in_triangle_generous_2d(p, a, b, c)){ edge_intersection = true; }else{ p[0] = diagonal_end[j][1]; p[1] = diagonal_end[j][2]; if(point_in_triangle_generous_2d(p, a, b, c)) edge_intersection = true; } } }else if(singular_y){ if(fabs(diagonal_beg[j][1] - vy1) < epsilon){ p[0] = diagonal_beg[j][0]; p[1] = diagonal_beg[j][2]; a[0] = mesh.vertices[it->v[0]][0]; a[1] = mesh.vertices[it->v[0]][2]; b[0] = mesh.vertices[it->v[1]][0]; b[1] = mesh.vertices[it->v[1]][2]; c[0] = mesh.vertices[it->v[2]][0]; c[1] = mesh.vertices[it->v[2]][2]; if(point_in_triangle_generous_2d(p, a, b, c)){ edge_intersection = true; }else{ p[0] = diagonal_end[j][0]; p[1] = diagonal_end[j][2]; if(point_in_triangle_generous_2d(p, a, b, c)) edge_intersection = true; } } }else if(singular_z){ if(fabs(diagonal_beg[j][2] - vz1) < epsilon){ p[0] = diagonal_beg[j][0]; p[1] = diagonal_beg[j][1]; a[0] = mesh.vertices[it->v[0]][0]; a[1] = mesh.vertices[it->v[0]][1]; b[0] = mesh.vertices[it->v[1]][0]; b[1] = mesh.vertices[it->v[1]][1]; c[0] = mesh.vertices[it->v[2]][0]; c[1] = mesh.vertices[it->v[2]][1]; if(point_in_triangle_generous_2d(p, a, b, c)){ edge_intersection = true; }else{ p[0] = diagonal_end[j][0]; p[1] = diagonal_end[j][1]; if(point_in_triangle_generous_2d(p, a, b, c)) edge_intersection = true; } } } if(edge_intersection || intersection_line_triangle_3d(mesh.vertices[it->v[0]], mesh.vertices[it->v[1]], mesh.vertices[it->v[2]], diagonal_beg[j], diagonal_end[j], sol)){ grid[x][y][z].push_back(&*it); #if DEBUG_OUTPUT_BACKGRID != 0 z_bt[x][y][z] = 1; #endif break; } } } } } } } #if DEBUG_OUTPUT_BACKGRID != 0 std::ofstream out("z_bg.lm3"); out << "dim: 3\n"; out << "size: " << segments[0] << " " << segments[1] << " " << segments[2] << "\n"; out << "box_size: " << seg_size[0] << " " << seg_size[1] << " " << seg_size[2] << "\n"; out << "offset: " << minc[0] << " " << minc[1] << " " << minc[2] << "\n"; out << "y-axis: textual\n"; out << "\nmatrices:\n"; for(z = 0; z < segments[2]; ++z){ out << "z = " << z << ":\n"; for(y = 0; y < segments[1]; ++y){ for(x = 0; x < segments[0] - 1; ++x){ out << z_bt[x][y][z] << " "; } out << z_bt[segments[0] - 1][y][z] << "\n"; } out << "\n"; } out.close(); #endif } //--------------------< test_distances_3d > //tests whether one of the surface elements in the segment with indices 'ix', 'iy', 'iz' has a //distance to 'destination' which is smaller than 'min_distance'. If so, 'min_distance' is set //to the new smallest distance. void BackGrid::test_distances_3d(const Vertex &destination, int ix, int iy, int iz, double &min_distance, Vertex &hit_vertex){ std::list<Element*> &lst = grid[ix][iy][iz]; for(std::list<Element*>::iterator it = lst.begin(), it_end = lst.end(); it != it_end; ++it){ Element &e = **it; if(e.operation_index != current_operation_index){ e.operation_index = current_operation_index; Vertex current_hit_vertex; double distance = distance_point_triangle_3d(destination, mesh.vertices[e.v[0]], mesh.vertices[e.v[1]], mesh.vertices[e.v[2]], current_hit_vertex); if(distance < min_distance){ min_distance = distance; hit_vertex = current_hit_vertex; } } } } //--------------------< distance_to_surface_3d > double BackGrid::distance_to_surface_3d(const Vertex &destination, Vertex &hit_vertex){ //traverse through segments of the backgrid in concentric rectangles around 'destination' int sx1 = (int)((destination[0] - minc[0]) / seg_size[0]); if(sx1 >= segments[0]) sx1 = segments[0] - 1; if(sx1 < 0) sx1 = 0; int sy1 = (int)((destination[1] - minc[1]) / seg_size[1]); if(sy1 >= segments[1]) sy1 = segments[1] - 1; if(sy1 < 0) sy1 = 0; int sz1 = (int)((destination[2] - minc[2]) / seg_size[2]); if(sz1 >= segments[2]) sz1 = segments[2] - 1; if(sz1 < 0) sz1 = 0; //determine maximal number of concentric rectangles around 'destination' that might have //intersections int sx2 = segments[0] - sx1 - 1; if(sx1 > sx2) sx2 = sx1; int sy2 = segments[1] - sy1 - 1; if(sy1 > sy2) sy2 = sy1; if(sx2 > sy2) sy2 = sx2; int sz2 = segments[2] - sz1 - 1; if(sz1 > sz2) sz2 = sz1; if(sy2 > sz2) sz2 = sy2; //now sz2 stores the maximal number of rectangles ++current_operation_index; //check the segment containing 'destination' for nearby surface mesh elements double min_distance = 9e100; test_distances_3d(destination, sx1, sy1, sz1, min_distance, hit_vertex); //successively check segments around 'destination' with increasing distance to 'destination' for(int i = 1; i <= sz2; i++){ int x, y, z; //determine boundaries of back and front int p1 = sx1 - i; if(p1 < 0) p1 = 0; int p2 = sx1 + i; if(p2 >= segments[0]) p2 = segments[0] - 1; int q1 = sy1 - i; if(q1 < 0) q1 = 0; int q2 = sy1 + i; if(q2 >= segments[1]) q2 = segments[1] - 1; //back z = sz1 - i; if(z >= 0){ for(y = q1; y <= q2; y++){ for(x = p1; x <= p2; x++) if(!grid[x][y][z].empty()){ test_distances_3d(destination, x, y, z, min_distance, hit_vertex); } } } //front z = sz1 + i; if(z < segments[2]){ for(y = q1; y <= q2; y++){ for(x = p1; x <= p2; x++) if(!grid[x][y][z].empty()){ test_distances_3d(destination, x, y, z, min_distance, hit_vertex); } } } //determine boundaries of bottom and top p1 = sx1 - i; if(p1 < 0) p1 = 0; p2 = sx1 + i; if(p2 >= segments[0]) p2 = segments[0] - 1; q1 = sz1 - i + 1; if(q1 < 0) q1 = 0; q2 = sz1 + i - 1; if(q2 >= segments[2]) q2 = segments[2] - 1; //bottom y = sy1 - i; if(y >= 0){ for(z = q1; z <= q2; z++){ for(x = p1; x <= p2; x++) if(!grid[x][y][z].empty()){ test_distances_3d(destination, x, y, z, min_distance, hit_vertex); } } } //top y = sy1 + i; if(y < segments[1]){ for(z = q1; z <= q2; z++){ for(x = p1; x <= p2; x++) if(!grid[x][y][z].empty()){ test_distances_3d(destination, x, y, z, min_distance, hit_vertex); } } } //determine boundaries of left and right p1 = sy1 - i + 1; if(p1 < 0) p1 = 0; p2 = sy1 + i - 1; if(p2 >= segments[1]) p2 = segments[1] - 1; q1 = sz1 - i + 1; if(q1 < 0) q1 = 0; q2 = sz1 + i - 1; if(q2 >= segments[2]) q2 = segments[2] - 1; //left x = sx1 - i; if(x >= 0){ for(z = q1; z <= q2; z++){ for(y = p1; y <= p2; y++) if(!grid[x][y][z].empty()){ test_distances_3d(destination, x, y, z, min_distance, hit_vertex); } } } //right x = sx1 + i; if(x < segments[0]){ for(z = q1; z <= q2; z++){ for(y = p1; y <= p2; y++) if(!grid[x][y][z].empty()){ test_distances_3d(destination, x, y, z, min_distance, hit_vertex); } } } if(min_distance < i * min_seg_size) break; } return min_distance; }