datacollector.hh 12.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#pragma once

#include <algorithm>
#include <cstdint>
#include <vector>

#include "vtktypes.hh"

namespace Dune { namespace experimental {

struct Cells
{
  std::vector<std::uint8_t> types;
  std::vector<std::int64_t> offsets;
  std::vector<std::int64_t> connectivity;
};

class DataCollectorInterface
{
private:
  DataCollectorInterface () = default;

public:
  /// \brief Return the number of points in the grid
  std::uint64_t numPoints () const;

  /// \brief Return the number of cells in the grid
  std::uint64_t numCells () const;

  /// Update the DataCollector on the current GridView
  void update ();

  /// \brief Return a flat vector of point coordinates
  /**
   * All coordinates are extended to 3 components and concatenated.
   * [p0_x, p0_y, p0_z, p1_x, p1_y, p1_z, ...]
   * If the GridView::dimensionworld < 3, the remaining components are
   * set to 0
   **/
  template <class T>
  std::vector<T> points () const;

  /// \brief Return cell types, offsets, and connectivity. \see Cells
  Cells cells () const;

  /// \brief Return a flat vector of function values evaluated at the grid points.
  /**
   * In case of a vector valued function, flat the vector entries:
   * [fct(p0)_0, fct(p0)_1, fct(p0)_2, fct(p1)_0, ...]
   * where the vector dimension must be 3 (possible extended by 0s)
   * In case of tensor valued function, flat the tensor row-wise:
   * [fct(p0)_00, fct(p0)_01, fct(p0)_02, fct(p0)_10, fct(p0)_11, fct(p0)_12, fct(p0)_20...]
   * where the tensor dimension must be 3x3 (possible extended by 0s)
   **/
  template <class T, class GlobalFunction>
  std::vector<T> pointData (GlobalFunction const& fct) const;

  /// \brief Return a flat vector of function values evaluated at the grid cells. \see pointData.
  template <class T, class GlobalFunction>
  std::vector<T> cellData (GlobalFunction const& fct) const;
};


/// Implementation of \ref DataCollector for linear cells, with continuous data.
template <class GridView>
class DefaultDataCollector
{
  enum { dim = GridView::dimension };

public:
  DefaultDataCollector (GridView const& gridView)
    : gridView_(gridView)
  {}

  void update () {}

  std::uint64_t numPoints () const
  {
    return gridView_.size(dim);
  }

  std::uint64_t numCells () const
  {
    return gridView_.size(0);
  }

  template <class T>
  std::vector<T> points () const
  {
    std::vector<T> data(numPoints() * 3);
    auto const& indexSet = gridView_.indexSet();
    for (auto const& vertex : vertices(gridView_)) {
      std::size_t idx = 3 * indexSet.index(vertex);
      auto v = vertex.geometry().center();
      for (std::size_t j = 0; j < v.size(); ++j)
        data[idx + j] = T(v[j]);
      for (std::size_t j = v.size(); j < 3u; ++j)
        data[idx + j] = T(0);
    }
    return data;
  }

  Cells cells () const
  {
    auto const& indexSet = gridView_.indexSet();
    auto types = indexSet.types(0);
    int maxVertices = std::accumulate(types.begin(), types.end(), 1, [](int m, GeometryType t) {
      auto refElem = referenceElement<double,dim>(t);
      return std::max(m, refElem.size(dim));
    });

    Cells cells;
    cells.connectivity.reserve(numCells() * maxVertices);
    cells.offsets.reserve(numCells());
    cells.types.reserve(numCells());

    std::int64_t old_o = 0;
    for (auto const& c : elements(gridView_)) {
      Vtk::CellType cellType(c.type());
      for (int j = 0; j < c.subEntities(dim); ++j)
        cells.connectivity.push_back( std::int64_t(indexSet.subIndex(c,cellType.permutation(j),dim)) );
      cells.offsets.push_back(old_o += c.subEntities(dim));
      cells.types.push_back(cellType.type());
    }

    return cells;
  }

  template <class T, class GlobalFunction>
  std::vector<T> pointData (GlobalFunction const& fct) const
  {
    std::vector<T> data(numPoints() * fct.ncomps());
    auto const& indexSet = gridView_.indexSet();
    auto localFct = localFunction(fct);
    for (auto const& e : elements(gridView_)) {
      localFct.bind(e);
      Vtk::CellType cellType{e.type()};
      auto refElem = referenceElement(e.geometry());
      for (int j = 0; j < e.subEntities(dim); ++j) {
        std::size_t idx = fct.ncomps() * indexSet.subIndex(e,cellType.permutation(j),dim);
        for (int comp = 0; comp < fct.ncomps(); ++comp)
          data[idx + comp] = T(localFct.evaluate(comp, refElem.position(cellType.permutation(j),dim)));
      }
      localFct.unbind();
    }
    return data;
  }

  template <class T, class GlobalFunction>
  std::vector<T> cellData (GlobalFunction const& fct) const
  {
    std::vector<T> data(numCells() * fct.ncomps());
    auto const& indexSet = gridView_.indexSet();
    auto localFct = localFunction(fct);
    for (auto const& e : elements(gridView_)) {
      localFct.bind(e);
      auto refElem = referenceElement(e.geometry());
      std::size_t idx = fct.ncomps() * indexSet.index(e);
      for (int comp = 0; comp < fct.ncomps(); ++comp)
        data[idx + comp] = T(localFct.evaluate(comp, refElem.position(0,0)));
      localFct.unbind();
    }
    return data;
  }

private:
  GridView gridView_;
};


/// Implementation of \ref DataCollector for linear cells, with discontinuous data.
template <class GridView>
class DiscontinuousDataCollector
{
  enum { dim = GridView::dimension };

public:
  DiscontinuousDataCollector (GridView const& gridView)
    : gridView_(gridView)
  {}

  void update ()
  {
    numPoints_ = 0;
    indexMap_.resize(gridView_.size(dim));
    std::int64_t vertex_idx = 0;
    auto const& indexSet = gridView_.indexSet();
    for (auto const& c : elements(gridView_)) {
      numPoints_ += c.subEntities(dim);
      for (int i = 0; i < c.subEntities(dim); ++i)
        indexMap_[indexSet.subIndex(c, i, dim)] = vertex_idx++;
    }
  }

  std::uint64_t numPoints () const
  {
    return numPoints_;
  }

  std::uint64_t numCells () const
  {
    return gridView_.size(0);
  }

  template <class T>
  std::vector<T> points () const
  {
    std::vector<T> data(numPoints() * 3);
    auto const& indexSet = gridView_.indexSet();
    for (auto const& element : elements(gridView_)) {
      for (int i = 0; i < element.subEntities(dim); ++i) {
        std::size_t idx = 3 * indexMap_[indexSet.subIndex(element, i, dim)];
        auto v = element.geometry().corner(i);
        for (std::size_t j = 0; j < v.size(); ++j)
          data[idx + j] = T(v[j]);
        for (std::size_t j = v.size(); j < 3u; ++j)
          data[idx + j] = T(0);
      }
    }
    return data;
  }

  Cells cells () const
  {
    Cells cells;
    cells.connectivity.reserve(numPoints());
    cells.offsets.reserve(numCells());
    cells.types.reserve(numCells());

    std::int64_t old_o = 0;
    auto const& indexSet = gridView_.indexSet();
    for (auto const& c : elements(gridView_)) {
      Vtk::CellType cellType(c.type());
      for (int j = 0; j < c.subEntities(dim); ++j) {
        std::int64_t vertex_idx = indexMap_[indexSet.subIndex(c,cellType.permutation(j),dim)];
        cells.connectivity.push_back(vertex_idx);
      }
      cells.offsets.push_back(old_o += c.subEntities(dim));
      cells.types.push_back(cellType.type());
    }

    return cells;
  }

  template <class T, class GlobalFunction>
  std::vector<T> pointData (GlobalFunction const& fct) const
  {
    std::vector<T> data(numPoints() * fct.ncomps());
    auto const& indexSet = gridView_.indexSet();
    auto localFct = localFunction(fct);
    for (auto const& e : elements(gridView_)) {
      localFct.bind(e);
      Vtk::CellType cellType{e.type()};
      auto refElem = referenceElement(e.geometry());
      for (int j = 0; j < e.subEntities(dim); ++j) {
        std::size_t idx = fct.ncomps() * indexMap_[indexSet.subIndex(e, cellType.permutation(j), dim)];
        for (int comp = 0; comp < fct.ncomps(); ++comp)
          data[idx + comp] = T(localFct.evaluate(comp, refElem.position(cellType.permutation(j),dim)));
      }
      localFct.unbind();
    }
    return data;
  }

  template <class T, class GlobalFunction>
  std::vector<T> cellData (GlobalFunction const& fct) const
  {
    std::vector<T> data(numCells() * fct.ncomps());
    auto const& indexSet = gridView_.indexSet();
    auto localFct = localFunction(fct);
    for (auto const& e : elements(gridView_)) {
      localFct.bind(e);
      auto refElem = referenceElement(e.geometry());
      std::size_t idx = fct.ncomps() * indexSet.index(e);
      for (int comp = 0; comp < fct.ncomps(); ++comp)
        data[idx + comp] = T(localFct.evaluate(comp, refElem.position(0,0)));
      localFct.unbind();
    }
    return data;
  }

private:
  GridView gridView_;
  std::uint64_t numPoints_ = 0;
  std::vector<std::int64_t> indexMap_;
};


/// Implementation of \ref DataCollector for quadratic cells, with continuous data.
template <class GridView>
class QuadraticDataCollector
{
  enum { dim = GridView::dimension };

public:
  QuadraticDataCollector (GridView const& gridView)
    : gridView_(gridView)
  {}

  void update () {}

  std::uint64_t numPoints () const
  {
    return gridView_.size(dim) + gridView_.size(dim-1);
  }

  std::uint64_t numCells () const
  {
    return gridView_.size(0);
  }

  template <class T>
  std::vector<T> points () const
  {
    std::vector<T> data(numPoints() * 3);
    auto const& indexSet = gridView_.indexSet();
    for (auto const& element : elements(gridView_)) {
      auto geometry = element.geometry();
      auto refElem = referenceElement<T,dim>(element.type());

      // vertices
      for (int i = 0; i < element.subEntities(dim); ++i) {
        std::size_t idx = 3 * indexSet.subIndex(element, i, dim);
        auto v = geometry.global(refElem.position(i,dim));
        for (std::size_t j = 0; j < v.size(); ++j)
          data[idx + j] = T(v[j]);
        for (std::size_t j = v.size(); j < 3u; ++j)
          data[idx + j] = T(0);
      }
      // edge centers
      for (int i = 0; i < element.subEntities(dim-1); ++i) {
        std::size_t idx = 3 * (indexSet.subIndex(element, i, dim-1) + gridView_.size(dim));
        auto v = geometry.global(refElem.position(i,dim-1));
        for (std::size_t j = 0; j < v.size(); ++j)
          data[idx + j] = T(v[j]);
        for (std::size_t j = v.size(); j < 3u; ++j)
          data[idx + j] = T(0);
      }
    }
    return data;
  }

  Cells cells () const
  {
    Cells cells;
    cells.connectivity.reserve(numPoints());
    cells.offsets.reserve(numCells());
    cells.types.reserve(numCells());

    std::int64_t old_o = 0;
    auto const& indexSet = gridView_.indexSet();
    for (auto const& c : elements(gridView_)) {
      Vtk::CellType cellType(c.type(), Vtk::QUADRATIC);
      for (int j = 0; j < c.subEntities(dim); ++j) {
        int k = cellType.permutation(j);
        std::int64_t point_idx = indexSet.subIndex(c,k,dim);
        cells.connectivity.push_back(point_idx);
      }
      for (int j = 0; j < c.subEntities(dim-1); ++j) {
        int k = cellType.permutation(c.subEntities(dim) + j);
        std::int64_t point_idx = (indexSet.subIndex(c,k,dim-1) + gridView_.size(dim));
        cells.connectivity.push_back(point_idx);
      }
      cells.offsets.push_back(old_o += c.subEntities(dim)+c.subEntities(dim-1));
      cells.types.push_back(cellType.type());
    }

    return cells;
  }

  template <class T, class GlobalFunction>
  std::vector<T> pointData (GlobalFunction const& fct) const
  {
    std::vector<T> data(numPoints() * fct.ncomps());
    auto const& indexSet = gridView_.indexSet();
    auto localFct = localFunction(fct);
    for (auto const& e : elements(gridView_)) {
      localFct.bind(e);
      Vtk::CellType cellType{e.type(), Vtk::QUADRATIC};
      auto refElem = referenceElement(e.geometry());
      for (int j = 0; j < e.subEntities(dim); ++j) {
        int k = cellType.permutation(j);
        std::size_t idx = fct.ncomps() * indexSet.subIndex(e, k, dim);
        for (int comp = 0; comp < fct.ncomps(); ++comp)
          data[idx + comp] = T(localFct.evaluate(comp, refElem.position(k, dim)));
      }
      for (int j = 0; j < e.subEntities(dim-1); ++j) {
        int k = cellType.permutation(e.subEntities(dim) + j);
        std::size_t idx = fct.ncomps() * (indexSet.subIndex(e, k, dim-1) + gridView_.size(dim));
        for (int comp = 0; comp < fct.ncomps(); ++comp)
          data[idx + comp] = T(localFct.evaluate(comp, refElem.position(k, dim-1)));
      }
      localFct.unbind();
    }
    return data;
  }

  template <class T, class GlobalFunction>
  std::vector<T> cellData (GlobalFunction const& fct) const
  {
    std::vector<T> data(numCells() * fct.ncomps());
    auto const& indexSet = gridView_.indexSet();
    auto localFct = localFunction(fct);
    for (auto const& e : elements(gridView_)) {
      localFct.bind(e);
      auto refElem = referenceElement(e.geometry());
      std::size_t idx = fct.ncomps() * indexSet.index(e);
      for (int comp = 0; comp < fct.ncomps(); ++comp)
        data[idx + comp] = T(localFct.evaluate(comp, refElem.position(0,0)));
      localFct.unbind();
    }
    return data;
  }

private:
  GridView gridView_;
};

}} // end namespace Dune::experimental