Commit d5512f7e by Jaap, Patrick

### Index i<->j im Jacobiverfahren korrigiert

parent 46faca62
Pipeline #6200 passed with stage
in 3 minutes and 25 seconds
 ... ... @@ -674,9 +674,9 @@ Für $i=1,\ldots,n$ \begin{equation*} x_i^{k+1} = \frac{1}{A_{ii}} \bigg(b_i-\sum_{\substack{j=1\\j\neq i}}^n A_{ij}x_i^k \bigg) \frac{1}{A_{ii}} \bigg(b_i-\sum_{\substack{j=1\\j\neq i}}^n A_{ij}x_j^k \bigg) = x^k_i + \frac{1}{A_{ii}} \bigg(b_i-\sum_{j=1}^n A_{ij}x_i^k \bigg). x^k_i + \frac{1}{A_{ii}} \bigg(b_i-\sum_{j=1}^n A_{ij}x_j^k \bigg). \end{equation*} Beachte: \begin{itemize} ... ... @@ -695,7 +695,7 @@ Dabei wählt man einen Parameter $\eta > 0$ und definiert \begin{equation*} x_i^{k+1} = x^k_i + \frac{\eta}{A_{ii}} \bigg(b_i-\sum_{j=1}^n A_{ij}x_i^k \bigg) x^k_i + \frac{\eta}{A_{ii}} \bigg(b_i-\sum_{j=1}^n A_{ij}x_j^k \bigg) \qquad \text{bzw.} \qquad x^{k+1} = x^k + \eta D^{-1} ( b - Ax^k). \end{equation*} ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!