diff --git a/src/harmonicenergystiffness.hh b/src/harmonicenergystiffness.hh
index 10b1ecfb6b355572ddb041d8a89d754bfa4cf941..a3f30e4eb0183c2895f0f66cb0a98ec8e34ceb7c 100644
--- a/src/harmonicenergystiffness.hh
+++ b/src/harmonicenergystiffness.hh
@@ -9,9 +9,7 @@
 
 template<class GridView, class TargetSpace>
 class HarmonicEnergyLocalStiffness 
-    : public Dune::LocalStiffness<GridView,
-                                  TargetSpace::TangentVector::field_type,
-                                  TargetSpace::TangentVector::size>
+    : public Dune::LocalGeodesicFEStiffness<GridView,TargetSpace>
 {
     // grid types
     typedef typename GridView::Grid::ctype DT;
@@ -19,22 +17,12 @@ class HarmonicEnergyLocalStiffness
     typedef typename GridView::template Codim<0>::EntityPointer EntityPointer;
     
     // some other sizes
-    enum {dim=GridView::dimension};
-
-    // Quadrature order used for the extension and shear energy
-    enum {shearQuadOrder = 2};
-
-    // Quadrature order used for the bending and torsion energy
-    enum {bendingQuadOrder = 2};
+    enum {gridDim=GridView::dimension};
 
 public:
     
-    //! Each block is x, y, theta in 2d, T (R^3 \times SO(3)) in 3d
-    enum { blocksize = 6 };
-
-    // define the number of components of your system, this is used outside
-    // to allocate the correct size of (dense) blocks with a FieldMatrix
-    enum {m=blocksize};
+    //! Dimension of a tangent space
+    enum { blocksize = TargetSpace::TangentVector::size };
 
     // types for matrics, vectors and boundary conditions
     typedef Dune::FieldMatrix<RT,m,m> MBlockType; // one entry in the stiffness matrix
@@ -42,28 +30,10 @@ public:
     typedef Dune::array<Dune::BoundaryConditions::Flags,m> BCBlockType;     // componentwise boundary conditions
 
     //! Default Constructor
-    RodLocalStiffness ()
+    HarmonicEnergyLocalStiffness ()
     {}
 
-    //! Default Constructor
-    RodLocalStiffness (const Dune::array<double,3>& K, const Dune::array<double,3>& A)
-    {
-        for (int i=0; i<3; i++) {
-            K_[i] = K[i];
-            A_[i] = A[i];
-        }
-    }
-    
-    //! assemble local stiffness matrix for given element and order
-    /*! On exit the following things have been done:
-      - The stiffness matrix for the given entity and polynomial degree has been assembled and is
-      accessible with the mat() method.
-      - The boundary conditions have been evaluated and are accessible with the bc() method
-      - The right hand side has been assembled. It contains either the value of the essential boundary
-      condition or the assembled source term and neumann boundary condition. It is accessible via the rhs() method.
-      @param[in]  e    a codim 0 entity reference
-      \param[in]  localSolution Current local solution, because this is a nonlinear assembler
-      @param[in]  k    order of Lagrange basis
+    /** \brief assemble local stiffness matrix for given element
     */
     void assemble (const Entity& e, 
                    const Dune::BlockVector<Dune::FieldVector<double, 6> >& localSolution,
@@ -72,12 +42,6 @@ public:
         DUNE_THROW(Dune::NotImplemented, "!");
     }
 
-    /** \todo Remove this once this methods is not in base class LocalStiffness anymore */
-    void assemble (const Entity& e, int k=1)
-    {
-        DUNE_THROW(Dune::NotImplemented, "!");
-    }
-
     void assembleBoundaryCondition (const Entity& e, int k=1)
     {
         DUNE_THROW(Dune::NotImplemented, "!");
@@ -85,19 +49,7 @@ public:
 
     
     RT energy (const Entity& e,
-               const Dune::array<RigidBodyMotion<3>,2>& localSolution,
-               const Dune::array<RigidBodyMotion<3>,2>& localReferenceConfiguration,
-               int k=1);
-
-    static void interpolationDerivative(const Rotation<3,RT>& q0, const Rotation<3,RT>& q1, double s,
-                                        Dune::array<Quaternion<double>,6>& grad);
-
-    static void interpolationVelocityDerivative(const Rotation<3,RT>& q0, const Rotation<3,RT>& q1, double s,
-                                                double intervalLength, Dune::array<Quaternion<double>,6>& grad);
-
-    Dune::FieldVector<double, 6> getStrain(const Dune::array<RigidBodyMotion<3>,2>& localSolution,
-                                           const Entity& element,
-                                           const Dune::FieldVector<double,1>& pos) const;
+               const Dune::array<RigidBodyMotion<3>,2>& localSolution) const;
 
     /** \brief Assemble the element gradient of the energy functional */
     void assembleGradient(const Entity& element,
@@ -105,26 +57,12 @@ public:
                           const Dune::array<RigidBodyMotion<3>,2>& referenceConfiguration,
                           Dune::array<Dune::FieldVector<double,6>, 2>& gradient) const;
     
-    template <class T>
-    static Dune::FieldVector<T,3> darboux(const Rotation<3,T>& q, const Dune::FieldVector<T,4>& q_s) 
-    {
-        Dune::FieldVector<double,3> u;  // The Darboux vector
-        
-        u[0] = 2 * (q.B(0) * q_s);
-        u[1] = 2 * (q.B(1) * q_s);
-        u[2] = 2 * (q.B(2) * q_s);
-        
-        return u;
-    }
-        
 };
 
 template <class GridType, class RT>
 RT RodLocalStiffness<GridType, RT>::
 energy(const Entity& element,
-       const Dune::array<RigidBodyMotion<3>,2>& localSolution,
-       const Dune::array<RigidBodyMotion<3>,2>& localReferenceConfiguration,
-       int k)
+       const Dune::array<RigidBodyMotion<3>,2>& localSolution) const
 {
     RT energy = 0;
     
@@ -181,482 +119,5 @@ energy(const Entity& element,
     return energy;
 }
 
-
-template <class GridType, class RT>
-void RodLocalStiffness<GridType, RT>::
-interpolationDerivative(const Rotation<3,RT>& q0, const Rotation<3,RT>& q1, double s,
-                        Dune::array<Quaternion<double>,6>& grad)
-{
-    // Clear output array
-    for (int i=0; i<6; i++)
-        grad[i] = 0;
-
-    // The derivatives with respect to w^1
-
-    // Compute q_1^{-1}q_0
-    Rotation<3,RT> q1InvQ0 = q1;
-    q1InvQ0.invert();
-    q1InvQ0 = q1InvQ0.mult(q0);
-
-    {
-    // Compute v = (1-s) \exp^{-1} ( q_1^{-1} q_0)
-        Dune::FieldVector<RT,3> v = Rotation<3,RT>::expInv(q1InvQ0);
-    v *= (1-s);
-
-    Dune::FieldMatrix<RT,4,3> dExp_v = Rotation<3,RT>::Dexp(v);
-
-    Dune::FieldMatrix<RT,3,4> dExpInv = Rotation<3,RT>::DexpInv(q1InvQ0);
-
-    Dune::FieldMatrix<RT,4,4> mat(0);
-    for (int i=0; i<4; i++)
-        for (int j=0; j<4; j++)
-            for (int k=0; k<3; k++)
-                mat[i][j] += (1-s) * dExp_v[i][k] * dExpInv[k][j];
-
-    for (int i=0; i<3; i++) {
-
-        Quaternion<RT> dw;
-        for (int j=0; j<4; j++)
-            dw[j] = 0.5 * (i==j);  // dExp[j][i] at v=0
-        
-        dw = q1InvQ0.mult(dw);
-        
-        mat.umv(dw,grad[i]);
-        grad[i] = q1.mult(grad[i]);
-
-    }
-    }
-
-
-    // The derivatives with respect to w^1
-
-    // Compute q_0^{-1}
-    Rotation<3,RT> q0InvQ1 = q0;
-    q0InvQ1.invert();
-    q0InvQ1 = q0InvQ1.mult(q1);
-
-    {
-    // Compute v = s \exp^{-1} ( q_0^{-1} q_1)
-        Dune::FieldVector<RT,3> v = Rotation<3,RT>::expInv(q0InvQ1);
-    v *= s;
-
-    Dune::FieldMatrix<RT,4,3> dExp_v = Rotation<3,RT>::Dexp(v);
-
-    Dune::FieldMatrix<RT,3,4> dExpInv = Rotation<3,RT>::DexpInv(q0InvQ1);
-
-    Dune::FieldMatrix<RT,4,4> mat(0);
-    for (int i=0; i<4; i++)
-        for (int j=0; j<4; j++)
-            for (int k=0; k<3; k++)
-                mat[i][j] += s * dExp_v[i][k] * dExpInv[k][j];
-
-    for (int i=3; i<6; i++) {
-
-        Quaternion<RT> dw;
-        for (int j=0; j<4; j++)
-            dw[j] = 0.5 * ((i-3)==j);  // dExp[j][i-3] at v=0
-
-        dw = q0InvQ1.mult(dw);
-        
-        mat.umv(dw,grad[i]);
-        grad[i] = q0.mult(grad[i]);
-
-    }
-    }
-}
-
-
-
-template <class GridType, class RT>
-void RodLocalStiffness<GridType, RT>::
-interpolationVelocityDerivative(const Rotation<3,RT>& q0, const Rotation<3,RT>& q1, double s,
-                                double intervalLength, Dune::array<Quaternion<double>,6>& grad)
-{
-    // Clear output array
-    for (int i=0; i<6; i++)
-        grad[i] = 0;
-
-    // Compute q_0^{-1}
-    Rotation<3,RT> q0Inv = q0;
-    q0Inv.invert();
-
-
-    // Compute v = s \exp^{-1} ( q_0^{-1} q_1)
-    Dune::FieldVector<RT,3> v = Rotation<3,RT>::expInv(q0Inv.mult(q1));
-    v *= s/intervalLength;
-
-    Dune::FieldMatrix<RT,4,3> dExp_v = Rotation<3,RT>::Dexp(v);
-
-    Dune::array<Dune::FieldMatrix<RT,3,3>, 4> ddExp;
-    Rotation<3,RT>::DDexp(v, ddExp);
-
-    Dune::FieldMatrix<RT,3,4> dExpInv = Rotation<3,RT>::DexpInv(q0Inv.mult(q1));
-
-    Dune::FieldMatrix<RT,4,4> mat(0);
-    for (int i=0; i<4; i++)
-        for (int j=0; j<4; j++)
-            for (int k=0; k<3; k++)
-                mat[i][j] += 1/intervalLength * dExp_v[i][k] * dExpInv[k][j];
-
-    
-    // /////////////////////////////////////////////////
-    // The derivatives with respect to w^0
-    // /////////////////////////////////////////////////
-    for (int i=0; i<3; i++) {
-
-        // \partial exp \partial w^1_j at 0
-        Quaternion<RT> dw;
-        for (int j=0; j<4; j++)
-            dw[j] = 0.5*(i==j);  // dExp_v_0[j][i];
-
-        // \xi = \exp^{-1} q_0^{-1} q_1
-        Dune::FieldVector<RT,3> xi = Rotation<3,RT>::expInv(q0Inv.mult(q1));
-
-        Quaternion<RT> addend0;
-        addend0 = 0;
-        dExp_v.umv(xi,addend0);
-        addend0 = dw.mult(addend0);
-        addend0 /= intervalLength;
-
-        //  \parder{\xi}{w^1_j} = ...
-        Quaternion<RT> dwConj = dw;
-        dwConj.conjugate();
-        //dwConj[3] -= 2 * dExp_v_0[3][i];   the last row of dExp_v_0 is zero
-        dwConj = dwConj.mult(q0Inv.mult(q1));
-
-        Dune::FieldVector<RT,3> dxi(0);
-        Rotation<3,RT>::DexpInv(q0Inv.mult(q1)).umv(dwConj, dxi);
-
-        Quaternion<RT> vHv;
-        for (int j=0; j<4; j++) {
-            vHv[j] = 0;
-            // vHv[j] = dxi * DDexp * xi
-            for (int k=0; k<3; k++)
-                for (int l=0; l<3; l++)
-                    vHv[j] += ddExp[j][k][l]*dxi[k]*xi[l];
-        }
-
-        vHv *= s/intervalLength/intervalLength;
-
-        // Third addend
-        mat.umv(dwConj,grad[i]);
-
-        // add up
-        grad[i] += addend0;
-        grad[i] += vHv;
-
-        grad[i] = q0.mult(grad[i]);
-    }
-
-
-    // /////////////////////////////////////////////////
-    // The derivatives with respect to w^1
-    // /////////////////////////////////////////////////
-    for (int i=3; i<6; i++) {
-
-        // \partial exp \partial w^1_j at 0
-        Quaternion<RT> dw;
-        for (int j=0; j<4; j++)
-            dw[j] = 0.5 * ((i-3)==j);  // dw[j] = dExp_v_0[j][i-3];
-
-        // \xi = \exp^{-1} q_0^{-1} q_1
-        Dune::FieldVector<RT,3> xi = Rotation<3,RT>::expInv(q0Inv.mult(q1));
-
-        //  \parder{\xi}{w^1_j} = ...
-        Dune::FieldVector<RT,3> dxi(0);
-        dExpInv.umv(q0Inv.mult(q1.mult(dw)), dxi);
-
-        Quaternion<RT> vHv;
-        for (int j=0; j<4; j++) {
-            // vHv[j] = dxi * DDexp * xi
-            vHv[j] = 0;
-            for (int k=0; k<3; k++)
-                for (int l=0; l<3; l++)
-                    vHv[j] += ddExp[j][k][l]*dxi[k]*xi[l];
-        }
-
-        vHv *= s/intervalLength/intervalLength;
-
-        // ///////////////////////////////////
-        //   second addend
-        // ///////////////////////////////////
-            
-        
-        dw = q0Inv.mult(q1.mult(dw));
-        
-        mat.umv(dw,grad[i]);
-        grad[i] += vHv;
-
-        grad[i] = q0.mult(grad[i]);
-
-    }
-
-}
-
-template <class GridType, class RT>
-Dune::FieldVector<double, 6> RodLocalStiffness<GridType, RT>::
-getStrain(const Dune::array<RigidBodyMotion<3>,2>& localSolution,
-          const Entity& element,
-          const Dune::FieldVector<double,1>& pos) const
-{
-    if (!element.isLeaf())
-        DUNE_THROW(Dune::NotImplemented, "Only for leaf elements");
-
-    assert(localSolution.size() == 2);
-
-    // Strain defined on each element
-    Dune::FieldVector<double, 6> strain(0);
-
-    // Extract local solution on this element
-    const Dune::LagrangeShapeFunctionSet<double, double, 1> & baseSet 
-        = Dune::LagrangeShapeFunctions<double, double, 1>::general(element.type(), 1);
-    int numOfBaseFct = baseSet.size();
-    
-    const Dune::FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(pos);
-    
-    // ///////////////////////////////////////
-    //   Compute deformation gradient
-    // ///////////////////////////////////////
-    Dune::FieldVector<double,1> shapeGrad[numOfBaseFct];
-        
-    for (int dof=0; dof<numOfBaseFct; dof++) {
-            
-        for (int i=0; i<1; i++)
-            shapeGrad[dof][i] = baseSet[dof].evaluateDerivative(0,i,pos);
-        
-        // multiply with jacobian inverse 
-        Dune::FieldVector<double,1> tmp(0);
-        inv.umv(shapeGrad[dof], tmp);
-        shapeGrad[dof] = tmp;
-        
-    }
-        
-    // //////////////////////////////////
-    //   Interpolate
-    // //////////////////////////////////
-        
-    Dune::FieldVector<double,3> r_s;
-    for (int i=0; i<3; i++)
-        r_s[i] = localSolution[0].r[i]*shapeGrad[0][0] + localSolution[1].r[i]*shapeGrad[1][0];
-        
-    // Interpolate the rotation at the quadrature point
-    Rotation<3,double> q = Rotation<3,double>::interpolate(localSolution[0].q, localSolution[1].q, pos);
-        
-    // Get the derivative of the rotation at the quadrature point by interpolating in $H$
-    Quaternion<double> q_s = Rotation<3,double>::interpolateDerivative(localSolution[0].q, localSolution[1].q,
-                                                                       pos);
-    // Transformation from the reference element
-    q_s *= inv[0][0];
-        
-    // /////////////////////////////////////////////
-    //   Sum it all up
-    // /////////////////////////////////////////////
-        
-    // Part I: the shearing and stretching strain
-    strain[0] = r_s * q.director(0);    // shear strain
-    strain[1] = r_s * q.director(1);    // shear strain
-    strain[2] = r_s * q.director(2);    // stretching strain
-        
-    // Part II: the Darboux vector
-        
-    Dune::FieldVector<double,3> u = darboux(q, q_s);
-    
-    strain[3] = u[0];
-    strain[4] = u[1];
-    strain[5] = u[2];
-
-    return strain;
-}
-
-template <class GridType, class RT>
-void RodLocalStiffness<GridType, RT>::
-assembleGradient(const Entity& element,
-                 const Dune::array<RigidBodyMotion<3>,2>& solution,
-                 const Dune::array<RigidBodyMotion<3>,2>& referenceConfiguration,
-                 Dune::array<Dune::FieldVector<double,6>, 2>& gradient) const
-{
-    using namespace Dune;
-
-    // Extract local solution on this element
-    const Dune::LagrangeShapeFunctionSet<double, double, 1> & baseSet 
-        = Dune::LagrangeShapeFunctions<double, double, 1>::general(element.type(), 1); // first order
-    const int numOfBaseFct = baseSet.size();  
-        
-    // init
-    for (size_t i=0; i<gradient.size(); i++)
-        gradient[i] = 0;
-
-    double intervalLength = element.geometry().corner(1)[0] - element.geometry().corner(0)[0];
-
-    // ///////////////////////////////////////////////////////////////////////////////////
-    //   Reduced integration to avoid locking:  assembly is split into a shear part 
-    //   and a bending part.  Different quadrature rules are used for the two parts.
-    //   This avoids locking.
-    // ///////////////////////////////////////////////////////////////////////////////////
-    
-    // Get quadrature rule
-    const QuadratureRule<double, 1>& shearingQuad = QuadratureRules<double, 1>::rule(element.type(), shearQuadOrder);
-
-    for (int pt=0; pt<shearingQuad.size(); pt++) {
-        
-        // Local position of the quadrature point
-        const FieldVector<double,1>& quadPos = shearingQuad[pt].position();
-        
-        const FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(quadPos);
-        const double integrationElement = element.geometry().integrationElement(quadPos);
-        
-        double weight = shearingQuad[pt].weight() * integrationElement;
-        
-        // ///////////////////////////////////////
-        //   Compute deformation gradient
-        // ///////////////////////////////////////
-        double shapeGrad[numOfBaseFct];
-        
-        for (int dof=0; dof<numOfBaseFct; dof++) {
-            
-            shapeGrad[dof] = baseSet[dof].evaluateDerivative(0,0,quadPos);
-            
-            // multiply with jacobian inverse 
-            FieldVector<double,1> tmp(0);
-            inv.umv(shapeGrad[dof], tmp);
-            shapeGrad[dof] = tmp;
-            
-        }
-        
-        // //////////////////////////////////
-        //   Interpolate
-        // //////////////////////////////////
-        
-        FieldVector<double,3> r_s;
-        for (int i=0; i<3; i++)
-            r_s[i] = solution[0].r[i]*shapeGrad[0] + solution[1].r[i]*shapeGrad[1];
-        
-        // Interpolate current rotation at this quadrature point
-        Rotation<3,double> q = Rotation<3,double>::interpolate(solution[0].q, solution[1].q,quadPos[0]);
-        
-        // The current strain
-        FieldVector<double,blocksize> strain = getStrain(solution, element, quadPos);
-        
-        // The reference strain
-        FieldVector<double,blocksize> referenceStrain = getStrain(referenceConfiguration, element, quadPos);
-        
-        
-        // dd_dvij[m][i][j] = \parder {(d_k)_i} {q}
-        array<FieldMatrix<double,3 , 4>, 3> dd_dq;
-        q.getFirstDerivativesOfDirectors(dd_dq);
-        
-        // First derivatives of the position
-        array<Quaternion<double>,6> dq_dwij;
-        interpolationDerivative(solution[0].q, solution[1].q, quadPos, dq_dwij);
-
-        // /////////////////////////////////////////////
-        //   Sum it all up
-        // /////////////////////////////////////////////
-
-        for (int i=0; i<numOfBaseFct; i++) {
-            
-            // /////////////////////////////////////////////
-            //   The translational part
-            // /////////////////////////////////////////////
-            
-            // \partial \bar{W} / \partial r^i_j
-            for (int j=0; j<3; j++) {
-                
-                for (int m=0; m<3; m++) 
-                    gradient[i][j] += weight 
-                        * (  A_[m] * (strain[m] - referenceStrain[m]) * shapeGrad[i] * q.director(m)[j]);
-                
-            }
-            
-            // \partial \bar{W}_v / \partial v^i_j
-            for (int j=0; j<3; j++) {
-                
-                for (int m=0; m<3; m++) {
-                    FieldVector<double,3> tmp(0);
-                    dd_dq[m].umv(dq_dwij[3*i+j], tmp);
-                    gradient[i][3+j] += weight 
-                        * A_[m] * (strain[m] - referenceStrain[m]) * (r_s*tmp);
-                }
-            }
-            
-        }
-        
-    }
-
-    // /////////////////////////////////////////////////////
-    //   Now: the bending/torsion part
-    // /////////////////////////////////////////////////////
-
-    // Get quadrature rule
-    const QuadratureRule<double, 1>& bendingQuad = QuadratureRules<double, 1>::rule(element.type(), bendingQuadOrder);
-
-    for (int pt=0; pt<bendingQuad.size(); pt++) {
-        
-        // Local position of the quadrature point
-        const FieldVector<double,1>& quadPos = bendingQuad[pt].position();
-        
-        const FieldMatrix<double,1,1>& inv = element.geometry().jacobianInverseTransposed(quadPos);
-        const double integrationElement = element.geometry().integrationElement(quadPos);
-        
-        double weight = bendingQuad[pt].weight() * integrationElement;
-        
-        // Interpolate current rotation at this quadrature point
-        Rotation<3,double> q = Rotation<3,double>::interpolate(solution[0].q, solution[1].q,quadPos[0]);
-        
-        // Get the derivative of the rotation at the quadrature point by interpolating in $H$
-        Quaternion<double> q_s = Rotation<3,double>::interpolateDerivative(solution[0].q, solution[1].q,
-                                                                           quadPos);
-        // Transformation from the reference element
-        q_s *= inv[0][0];
-        
-        
-        // The current strain
-        FieldVector<double,blocksize> strain = getStrain(solution, element, quadPos);
-        
-        // The reference strain
-        FieldVector<double,blocksize> referenceStrain = getStrain(referenceConfiguration, element, quadPos);
-        
-        // First derivatives of the position
-        array<Quaternion<double>,6> dq_dwij;
-        interpolationDerivative(solution[0].q, solution[1].q, quadPos, dq_dwij);
-
-        array<Quaternion<double>,6> dq_ds_dwij;
-        interpolationVelocityDerivative(solution[0].q, solution[1].q, quadPos[0]*intervalLength, intervalLength, 
-                                        dq_ds_dwij);
-
-        // /////////////////////////////////////////////
-        //   Sum it all up
-        // /////////////////////////////////////////////
-
-        for (int i=0; i<numOfBaseFct; i++) {
-            
-            // /////////////////////////////////////////////
-            //   The rotational part
-            // /////////////////////////////////////////////
-
-            // \partial \bar{W}_v / \partial v^i_j
-            for (int j=0; j<3; j++) {
-                
-                for (int m=0; m<3; m++) {
-                    
-                    // Compute derivative of the strain
-                    /** \todo Is this formula correct?  It seems strange to call
-                        B(m) for a _derivative_ of a rotation */
-                    double du_dvij_m = 2 * (dq_dwij[i*3+j].B(m) * q_s)
-                        + 2* ( q.B(m) * dq_ds_dwij[i*3+j]);
-                    
-                    // Sum it up
-                    gradient[i][3+j] += weight * K_[m] 
-                        * (strain[m+3]-referenceStrain[m+3]) * du_dvij_m;
-                    
-                }
-                
-            }
-
-        }
-        
-    }
-}
-
 #endif