#include <config.h> #include <fenv.h> #include <iostream> #include <dune/common/fvector.hh> #include <dune/geometry/quadraturerules.hh> #include <dune/localfunctions/lagrange/pqkfactory.hh> #include <dune/gfe/rotation.hh> #include <dune/gfe/realtuple.hh> #include <dune/gfe/unitvector.hh> #include <dune/gfe/localgeodesicfefunction.hh> #include "multiindex.hh" #include "valuefactory.hh" const double eps = 1e-6; using namespace Dune; /** \brief Computes the diameter of a set */ template <class TargetSpace> double diameter(const std::vector<TargetSpace>& v) { double d = 0; for (size_t i=0; i<v.size(); i++) for (size_t j=0; j<v.size(); j++) d = std::max(d, TargetSpace::distance(v[i],v[j])); return d; } template <int domainDim, int elementOrder> std::vector<FieldVector<double,domainDim> > lagrangeNodes(const GeometryType& type) { PQkLocalFiniteElementCache<double,double,domainDim,elementOrder> feCache; std::vector<FieldVector<double,domainDim> > result(feCache.get(type).localBasis().size()); // evaluate loF at the Lagrange points of the second-order function const Dune::GenericReferenceElement<double,domainDim>& refElement = Dune::GenericReferenceElements<double,domainDim>::general(type); for (size_t i=0; i<feCache.get(type).localBasis().size(); i++) { result[i] = refElement.position(feCache.get(type).localCoefficients().localKey(i).subEntity(), feCache.get(type).localCoefficients().localKey(i).codim()); } return result; } template <int domainDim, class TargetSpace, int highElementOrder> void testNestedness(const LocalGeodesicFEFunction<domainDim,double,typename PQkLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType, TargetSpace>& loF) { // Make higher order local gfe function PQkLocalFiniteElementCache<double,double,domainDim,highElementOrder> feCache; typedef typename PQkLocalFiniteElementCache<double,double,domainDim,highElementOrder>::FiniteElementType LocalFiniteElement; // Get the Lagrange nodes of the high-order function std::vector<FieldVector<double,domainDim> > lNodes = lagrangeNodes<domainDim,highElementOrder>(loF.type()); // Evaluate low-order function at the high-order nodal values std::vector<TargetSpace> nodalValues(lNodes.size()); for (size_t i=0; i<lNodes.size(); i++) nodalValues[i] = loF.evaluate(lNodes[i]); LocalGeodesicFEFunction<domainDim,double,LocalFiniteElement,TargetSpace> hoF(feCache.get(loF.type()),nodalValues); // A quadrature rule as a set of test points int quadOrder = 10; // high, I want many many points const Dune::QuadratureRule<double, domainDim>& quad = Dune::QuadratureRules<double, domainDim>::rule(loF.type(), quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { const Dune::FieldVector<double,domainDim>& quadPos = quad[pt].position(); // evaluate value of low-order function TargetSpace loValue = loF.evaluate(quadPos); // evaluate value of high-order function TargetSpace hoValue = hoF.evaluate(quadPos); typename TargetSpace::CoordinateType diff = loValue.globalCoordinates(); diff -= hoValue.globalCoordinates(); static double maxDiff = 0; maxDiff = std::max(maxDiff, diff.infinity_norm()); if (maxDiff > 0.2) assert(false); if ( diff.infinity_norm() > eps ) { std::cout << className<TargetSpace>() << ": Values doe not match." << std::endl; std::cout << "Low order : " << loValue << std::endl; std::cout << "High order: " << hoValue << std::endl; assert(false); } } } template <class TargetSpace, int domainDim> void test(const GeometryType& element) { std::cout << " --- Testing " << className<TargetSpace>() << ", domain dimension: " << element.dim() << " ---" << std::endl; std::vector<TargetSpace> testPoints; ValueFactory<TargetSpace>::get(testPoints); int nTestPoints = testPoints.size(); size_t nVertices = Dune::GenericReferenceElements<double,domainDim>::general(element).size(domainDim); // Set up elements of the target space std::vector<TargetSpace> corners(nVertices); MultiIndex index(nVertices, nTestPoints); int numIndices = index.cycle(); for (int i=0; i<numIndices; i++, ++index) { for (size_t j=0; j<nVertices; j++) corners[j] = testPoints[index[j]]; if (diameter(corners) > 0.5*M_PI) continue; // Make local gfe function to be tested PQkLocalFiniteElementCache<double,double,domainDim,1> feCache; typedef typename PQkLocalFiniteElementCache<double,double,domainDim,1>::FiniteElementType LocalFiniteElement; LocalGeodesicFEFunction<domainDim,double,LocalFiniteElement,TargetSpace> f(feCache.get(element),corners); static const int highElementOrder = 2; testNestedness<domainDim,TargetSpace,highElementOrder>(f); } } int main() { // choke on NaN -- don't enable this by default, as there are // a few harmless NaN in the loopsolver //feenableexcept(FE_INVALID); std::cout << std::setw(15) << std::setprecision(12); GeometryType element; //////////////////////////////////////////////////////////////// // Test functions on 1d elements //////////////////////////////////////////////////////////////// element.makeSimplex(1); test<RealTuple<double,1>,1>(element); test<UnitVector<double,2>,1>(element); test<UnitVector<double,3>,1>(element); test<Rotation<double,3>,1>(element); test<RigidBodyMotion<double,3>,1>(element); //////////////////////////////////////////////////////////////// // Test functions on 2d simplex elements //////////////////////////////////////////////////////////////// element.makeSimplex(2); test<RealTuple<double,1>,2>(element); test<UnitVector<double,2>,2>(element); test<UnitVector<double,3>,2>(element); test<Rotation<double,3>,2>(element); test<RigidBodyMotion<double,3>,2>(element); //////////////////////////////////////////////////////////////// // Test functions on 2d quadrilateral elements //////////////////////////////////////////////////////////////// element.makeCube(2); test<RealTuple<double,1>,2>(element); test<UnitVector<double,2>,2>(element); test<UnitVector<double,3>,2>(element); test<Rotation<double,3>,2>(element); test<RigidBodyMotion<double,3>,2>(element); }