#include <config.h> #include <dune/grid/onedgrid.hh> #include <dune/fem/lagrangebase.hh> #include <dune/istl/io.hh> //#include "../common/boundarytreatment.hh" #include "../common/boundarypatch.hh" #include <dune/common/bitfield.hh> //#include "../common/readbitfield.hh" #include "src/rodassembler.hh" //#include "../common/linearipopt.hh" #include "../common/projectedblockgsstep.hh" #include <dune/solver/iterativesolver.hh> #include "../common/geomestimator.hh" #include "../common/energynorm.hh" #include <dune/common/configparser.hh> // Choose a solver //#define IPOPT #define GAUSS_SEIDEL //#define MULTIGRID //#define IPOPT_BASE // Number of degrees of freedom: // 3 (x, y, theta) for a planar rod const int blocksize = 3; using namespace Dune; using std::string; int main (int argc, char *argv[]) try { // Some types that I need typedef BCRSMatrix<FieldMatrix<double, blocksize, blocksize> > MatrixType; typedef BlockVector<FieldVector<double, blocksize> > VectorType; // parse data file ConfigParser parameterSet; parameterSet.parseFile("staticrod.parset"); // read solver settings const int minLevel = parameterSet.get("minLevel", int(0)); const int maxLevel = parameterSet.get("maxLevel", int(0)); double loadIncrement = parameterSet.get("loadIncrement", double(0)); const int maxNewtonSteps = parameterSet.get("maxNewtonSteps", int(0)); const int numIt = parameterSet.get("numIt", int(0)); const int nu1 = parameterSet.get("nu1", int(0)); const int nu2 = parameterSet.get("nu2", int(0)); const int mu = parameterSet.get("mu", int(0)); const int baseIt = parameterSet.get("baseIt", int(0)); const double tolerance = parameterSet.get("tolerance", double(0)); const double baseTolerance = parameterSet.get("baseTolerance", double(0)); // Problem settings const int numRodElements = parameterSet.get("numRodElements", int(0)); // /////////////////////////////////////// // Create the two grids // /////////////////////////////////////// typedef OneDGrid<1,1> RodGridType; RodGridType rod(numRodElements, 0, 1); Array<BitField> dirichletNodes; dirichletNodes.resize(maxLevel+1); dirichletNodes[0].resize( blocksize * (numRodElements+1) ); dirichletNodes[0].unsetAll(); dirichletNodes[0][0] = dirichletNodes[0][1] = dirichletNodes[0][2] = true; dirichletNodes[0][blocksize*numRodElements+0] = true; dirichletNodes[0][blocksize*numRodElements+1] = true; dirichletNodes[0][blocksize*numRodElements+2] = true; // refine uniformly until minlevel for (int i=0; i<minLevel; i++) rod.globalRefine(1); int maxlevel = rod.maxlevel(); // ////////////////////////////////////////////////////////// // Create obstacles // ////////////////////////////////////////////////////////// Array<BitField> hasObstacle; hasObstacle.resize(maxLevel+1); hasObstacle[0].resize(numRodElements+1); hasObstacle[0].unsetAll(); // ////////////////////////////////////////////////////////// // Create discrete function spaces // ////////////////////////////////////////////////////////// typedef FunctionSpace < double , double, 1, 1 > RodFuncSpace; typedef DefaultGridIndexSet<RodGridType,LevelIndex> RodIndexSet; typedef LagrangeDiscreteFunctionSpace < RodFuncSpace, RodGridType,RodIndexSet, 1> RodFuncSpaceType; Array<RodIndexSet*> rodIndexSet(maxlevel+1); Array<const RodFuncSpaceType*> rodFuncSpace(maxlevel+1); for (int i=0; i<maxlevel+1; i++) { rodIndexSet[i] = new RodIndexSet(rod, i); rodFuncSpace[i] = new RodFuncSpaceType(rod, *rodIndexSet[i], i); } // //////////////////////////////////////////////////////////// // Create solution and rhs vectors // //////////////////////////////////////////////////////////// VectorType rhs; VectorType x; VectorType corr; MatrixType hessianMatrix; rhs.resize(rodFuncSpace[maxlevel]->size()); x.resize(rodFuncSpace[maxlevel]->size()); corr.resize(rodFuncSpace[maxlevel]->size()); // Initial solution x = 0; for (int i=0; i<numRodElements+1; i++) { x[i][0] = i/((double)numRodElements); x[i][1] = 0; x[i][2] = M_PI/2; } x[0][1] = x[numRodElements][1] = 1; RodAssembler<RodFuncSpaceType,2> test(*rodFuncSpace[0]); test.assembleGradient(x, rhs); //std::cout << "Solution: " << std::endl << x << std::endl; //std::cout << "Gradient: " << std::endl << rhs << std::endl; std::cout << "Energy: " << test.computeEnergy(x) << std::endl; MatrixIndexSet indices(numRodElements+1, numRodElements+1); test.getNeighborsPerVertex(indices); indices.exportIdx(hessianMatrix); test.assembleMatrix(x,hessianMatrix); //printmatrix(std::cout, hessianMatrix, "hessianMatrix", "--"); //exit(0); // Create a solver #if defined IPOPT typedef LinearIPOptSolver<VectorType> SolverType; SolverType solver; solver.dirichletNodes_ = &totalDirichletNodes[maxlevel]; solver.hasObstacle_ = &contactAssembler.hasObstacle_[maxlevel]; solver.obstacles_ = &contactAssembler.obstacles_[maxlevel]; solver.verbosity_ = Solver::FULL; #elif defined GAUSS_SEIDEL typedef ProjectedBlockGSStep<MatrixType, VectorType> SmootherType; SmootherType projectedBlockGSStep(hessianMatrix, corr, rhs); projectedBlockGSStep.dirichletNodes_ = &dirichletNodes[maxlevel]; projectedBlockGSStep.hasObstacle_ = &hasObstacle[maxlevel]; projectedBlockGSStep.obstacles_ = NULL;//&contactAssembler.obstacles_[maxlevel]; EnergyNorm<MatrixType, VectorType> energyNorm(projectedBlockGSStep); IterativeSolver<MatrixType, VectorType> solver; solver.iterationStep = &projectedBlockGSStep; solver.numIt = numIt; solver.verbosity_ = Solver::QUIET; solver.errorNorm_ = &energyNorm; solver.tolerance_ = tolerance; #elif defined MULTIGRID // First create a base solver #ifdef IPOPT_BASE LinearIPOptSolver<BlockVector<FieldVector<double,dim> > > baseSolver; baseSolver.verbosity_ = Solver::FULL; #else // Gauss-Seidel is the base solver ProjectedBlockGSStep<MatrixType, BlockVector<FieldVector<double,dim> > > baseSolverStep; EnergyNorm<MatrixType, BlockVector<FieldVector<double,dim> > > baseEnergyNorm(baseSolverStep); IterativeSolver<MatrixType, BlockVector<FieldVector<double,dim> > > baseSolver; baseSolver.iterationStep = &baseSolverStep; baseSolver.numIt = baseIt; baseSolver.verbosity_ = Solver::QUIET; baseSolver.errorNorm_ = &baseEnergyNorm; baseSolver.tolerance_ = baseTolerance; #endif // Make pre and postsmoothers ProjectedBlockGSStep<MatrixType, BlockVector<FieldVector<double,dim> > > presmoother; ProjectedBlockGSStep<MatrixType, BlockVector<FieldVector<double,dim> > > postsmoother; ContactMMGStep<MatrixType, BlockVector<FieldVector<double,dim> > , FuncSpaceType > contactMMGStep(maxlevel+1); contactMMGStep.setMGType(1, nu1, nu2); contactMMGStep.dirichletNodes_ = &totalDirichletNodes; contactMMGStep.basesolver_ = &baseSolver; contactMMGStep.presmoother_ = &presmoother; contactMMGStep.postsmoother_ = &postsmoother; contactMMGStep.hasObstacle_ = &hasObstacle; contactMMGStep.obstacles_ = &contactAssembler.obstacles_; // Create the transfer operators contactMMGStep.mgTransfer_.resize(maxlevel); for (int i=0; i<contactMMGStep.mgTransfer_.size(); i++) contactMMGStep.mgTransfer_[i] = NULL; EnergyNorm<MatrixType, VectorType> energyNorm(contactMMGStep); IterativeSolver<MatrixType, BlockVector<FieldVector<double,dim> > > solver; solver.iterationStep = &contactMMGStep; solver.numIt = numIt; solver.verbosity_ = Solver::FULL; solver.errorNorm_ = &energyNorm; solver.tolerance_ = tolerance; #else #warning You have to specify a solver! #endif // /////////////////////////////////////////////////// // Do a homotopy of the Dirichlet boundary data // /////////////////////////////////////////////////// double loadFactor = 0; do { RodAssembler<RodFuncSpaceType, 1> rodAssembler(*rodFuncSpace[maxlevel]); loadFactor += loadIncrement; std::cout << "####################################################" << std::endl; std::cout << "New load factor: " << loadFactor << " new load increment: " << loadIncrement << std::endl; std::cout << "####################################################" << std::endl; // ///////////////////////////////////////////////////// // Newton Solver // ///////////////////////////////////////////////////// for (int j=0; j<maxNewtonSteps; j++) { rhs = 0; corr = 0; rodAssembler.assembleGradient(x, rhs); rodAssembler.assembleMatrix(x, hessianMatrix); rhs *= -1; std::cout << "rhs: " << std::endl << rhs << std::endl; #ifndef IPOPT solver.iterationStep->setProblem(hessianMatrix, corr, rhs); #else solver.setProblem(hessianMatrix, corr, rhs); #endif solver.preprocess(); #ifdef MULTIGRID contactMMGStep.preprocess(); #endif // ///////////////////////////// // Solve ! // ///////////////////////////// solver.solve(); #ifdef MULTIGRID totalCorr = contactMMGStep.getSol(); #endif std::cout << "Correction: \n" << corr << std::endl; // line search printf("------ Line Search ---------\n"); int lSSteps = 10; double smallestEnergy = std::numeric_limits<double>::max(); double smallestFactor = 1; for (int k=0; k<lSSteps; k++) { double factor = double(k)/(lSSteps-1); VectorType sCorr = corr; sCorr *= factor; sCorr += x; double energy = rodAssembler.computeEnergy(sCorr); if (energy < smallestEnergy) { smallestEnergy = energy; smallestFactor = factor; } //printf("factor: %g, energy: %g\n", factor, energy); } std::cout << "Damping factor: " << smallestFactor << std::endl; // Add correction to the current solution x.axpy(smallestFactor, corr); // Output result std::cout << "Solution:" << std::endl << x << std::endl; printf("infinity norm of the correction: %g\n", corr[0].infinity_norm()); if (corr.infinity_norm() < 1e-8) break; } } while (loadFactor < 1); } catch (Exception e) { std::cout << e << std::endl; }