#include <config.h> //#define DUNE_EXPRESSIONTEMPLATES #include <dune/grid/onedgrid.hh> #include <dune/istl/io.hh> #include <dune/common/bitfield.hh> #include "src/quaternion.hh" #include "src/rodassembler.hh" #include "src/rodsolver.hh" #include "../solver/iterativesolver.hh" #include "../common/geomestimator.hh" #include "../common/energynorm.hh" #include <dune/common/configparser.hh> #include "src/configuration.hh" #include "src/rodwriter.hh" // Number of degrees of freedom: // 7 (x, y, z, q_1, q_2, q_3, q_4) for a spatial rod const int blocksize = 6; using namespace Dune; using std::string; int main (int argc, char *argv[]) try { typedef std::vector<Configuration> SolutionType; // parse data file ConfigParser parameterSet; parameterSet.parseFile("rod3d.parset"); // read solver settings const int numLevels = parameterSet.get("numLevels", int(1)); const int maxTrustRegionSteps = parameterSet.get("maxNewtonSteps", int(0)); const int multigridIterations = parameterSet.get("numIt", int(0)); const int nu1 = parameterSet.get("nu1", int(0)); const int nu2 = parameterSet.get("nu2", int(0)); const int mu = parameterSet.get("mu", int(0)); const int baseIterations = parameterSet.get("baseIt", int(0)); const double mgTolerance = parameterSet.get("tolerance", double(0)); const double baseTolerance = parameterSet.get("baseTolerance", double(0)); const double initialTrustRegionRadius = parameterSet.get("initialTrustRegionRadius", double(1)); const int numRodBaseElements = parameterSet.get("numRodBaseElements", int(0)); // /////////////////////////////////////// // Create the grid // /////////////////////////////////////// typedef OneDGrid GridType; GridType grid(numRodBaseElements, 0, 1); grid.globalRefine(numLevels-1); std::vector<BitField> dirichletNodes(1); SolutionType x(grid.size(grid.maxLevel(),1)); // ////////////////////////// // Initial solution // ////////////////////////// for (int i=0; i<x.size(); i++) { x[i].r[0] = 0; // x x[i].r[1] = 0; // y x[i].r[2] = double(i)/(x.size()-1); // z //x[i].r[2] = i+5; x[i].q = Quaternion<double>::identity(); } // x[x.size()-1].r[0] = 0; // x[x.size()-1].r[1] = 0; // x[x.size()-1].r[2] = 0; #if 1 FieldVector<double,3> zAxis(0); zAxis[2] = 1; x[x.size()-1].q = Quaternion<double>(zAxis, M_PI); #endif std::cout << "Left boundary orientation:" << std::endl; std::cout << "director 0: " << x[0].q.director(0) << std::endl; std::cout << "director 1: " << x[0].q.director(1) << std::endl; std::cout << "director 2: " << x[0].q.director(2) << std::endl; std::cout << std::endl; std::cout << "Right boundary orientation:" << std::endl; std::cout << "director 0: " << x[x.size()-1].q.director(0) << std::endl; std::cout << "director 1: " << x[x.size()-1].q.director(1) << std::endl; std::cout << "director 2: " << x[x.size()-1].q.director(2) << std::endl; // exit(0); //x[0].r[2] = -1; dirichletNodes.resize(numLevels); for (int i=0; i<numLevels; i++) { dirichletNodes[i].resize( blocksize * grid.size(i,1), false ); for (int j=0; j<blocksize; j++) { dirichletNodes[i][j] = true; dirichletNodes[i][dirichletNodes[i].size()-1-j] = true; } } // /////////////////////////////////////////// // Create a solver for the rod problem // /////////////////////////////////////////// RodAssembler<GridType> rodAssembler(grid); rodAssembler.setShapeAndMaterial(0.01, 0.0001, 0.0001, 2.5e5, 0.3); RodSolver<GridType> rodSolver; rodSolver.setup(grid, &rodAssembler, x, maxTrustRegionSteps, initialTrustRegionRadius, multigridIterations, mgTolerance, mu, nu1, nu2, baseIterations, baseTolerance); // ///////////////////////////////////////////////////// // Solve! // ///////////////////////////////////////////////////// std::cout << "Energy: " << rodAssembler.computeEnergy(x) << std::endl; rodSolver.setInitialSolution(x); rodSolver.solve(); x = rodSolver.getSol(); // ////////////////////////////// // Output result // ////////////////////////////// writeRod(x, "rod3d.result"); BlockVector<FieldVector<double, 6> > strain(x.size()-1); rodAssembler.getStrain(x,strain); //std::cout << strain << std::endl; //exit(0); writeRod(x, strain, "rod3d.strain"); } catch (Exception e) { std::cout << e << std::endl; }