#ifndef HARMONIC_ENERGY_LOCAL_STIFFNESS_HH #define HARMONIC_ENERGY_LOCAL_STIFFNESS_HH #include <dune/common/fmatrix.hh> #include <dune/geometry/quadraturerules.hh> #include "localgeodesicfestiffness.hh" #include "localgeodesicfefunction.hh" template<class GridView, class LocalFiniteElement, class TargetSpace> class HarmonicEnergyLocalStiffness : public LocalGeodesicFEStiffness<GridView,LocalFiniteElement,TargetSpace> { // grid types typedef typename GridView::Grid::ctype DT; typedef typename TargetSpace::ctype RT; typedef typename GridView::template Codim<0>::Entity Entity; // some other sizes enum {gridDim=GridView::dimension}; public: //! Dimension of a tangent space enum { blocksize = TargetSpace::TangentVector::dimension }; /** \brief Assemble the energy for a single element */ RT energy (const Entity& e, const LocalFiniteElement& localFiniteElement, const std::vector<TargetSpace>& localSolution) const; }; template <class GridView, class LocalFiniteElement, class TargetSpace> typename HarmonicEnergyLocalStiffness<GridView, LocalFiniteElement, TargetSpace>::RT HarmonicEnergyLocalStiffness<GridView, LocalFiniteElement, TargetSpace>:: energy(const Entity& element, const LocalFiniteElement& localFiniteElement, const std::vector<TargetSpace>& localSolution) const { assert(element.type() == localFiniteElement.type()); typedef typename GridView::template Codim<0>::Entity::Geometry Geometry; RT energy = 0; typedef LocalGeodesicFEFunction<gridDim, double, LocalFiniteElement, TargetSpace> LocalGFEFunctionType; LocalGFEFunctionType localGeodesicFEFunction(localFiniteElement,localSolution); int quadOrder = (element.type().isSimplex()) ? (localFiniteElement.localBasis().order()-1) * 2 : localFiniteElement.localBasis().order() * 2 * gridDim; const Dune::QuadratureRule<double, gridDim>& quad = Dune::QuadratureRules<double, gridDim>::rule(element.type(), quadOrder); for (size_t pt=0; pt<quad.size(); pt++) { // Local position of the quadrature point const Dune::FieldVector<double,gridDim>& quadPos = quad[pt].position(); const double integrationElement = element.geometry().integrationElement(quadPos); const typename Geometry::JacobianInverseTransposed& jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(quadPos); double weight = quad[pt].weight() * integrationElement; // The derivative of the local function defined on the reference element typename LocalGFEFunctionType::DerivativeType referenceDerivative = localGeodesicFEFunction.evaluateDerivative(quadPos); // The derivative of the function defined on the actual element typename LocalGFEFunctionType::DerivativeType derivative(0); for (size_t comp=0; comp<referenceDerivative.N(); comp++) jacobianInverseTransposed.umv(referenceDerivative[comp], derivative[comp]); // Add the local energy density // The Frobenius norm is the correct norm here if the metric of TargetSpace is the identity. // (And if the metric of the domain space is the identity, which it always is here.) energy += weight * derivative.frobenius_norm2(); } return 0.5 * energy; } #endif