#include <dune/common/bitsetvector.hh> #include <dune/common/timer.hh> #include <dune/istl/io.hh> #include <dune/fufem/functionspacebases/p1nodalbasis.hh> #include <dune/fufem/assemblers/operatorassembler.hh> #include <dune/fufem/assemblers/localassemblers/laplaceassembler.hh> #include <dune/fufem/assemblers/localassemblers/massassembler.hh> // Using a monotone multigrid as the inner solver #include <dune/solvers/iterationsteps/trustregiongsstep.hh> #include <dune/solvers/iterationsteps/mmgstep.hh> #include <dune/solvers/transferoperators/truncatedcompressedmgtransfer.hh> #if defined THIRD_ORDER || defined SECOND_ORDER #include <dune/gfe/pktop1mgtransfer.hh> #endif #include <dune/solvers/transferoperators/mandelobsrestrictor.hh> #include <dune/solvers/solvers/iterativesolver.hh> #include "maxnormtrustregion.hh" #include <dune/solvers/norms/twonorm.hh> #include <dune/solvers/norms/h1seminorm.hh> template <class BasisType, class VectorType> void TrustRegionSolver<BasisType,VectorType>:: setup(const typename BasisType::GridView::Grid& grid, const FEAssembler<BasisType, VectorType>* assembler, const SolutionType& x, const Dune::BitSetVector<blocksize>& dirichletNodes, double tolerance, int maxTrustRegionSteps, double initialTrustRegionRadius, int multigridIterations, double mgTolerance, int mu, int nu1, int nu2, int baseIterations, double baseTolerance, const SolutionType& pointLoads) { grid_ = &grid; assembler_ = assembler; x_ = x; this->tolerance_ = tolerance; maxTrustRegionSteps_ = maxTrustRegionSteps; initialTrustRegionRadius_ = initialTrustRegionRadius; innerIterations_ = multigridIterations; innerTolerance_ = mgTolerance; ignoreNodes_ = &dirichletNodes; pointLoads_ = pointLoads; int numLevels = grid_->maxLevel()+1; // //////////////////////////////// // Create a multigrid solver // //////////////////////////////// #ifdef HAVE_IPOPT // First create an IPOpt base solver QuadraticIPOptSolver<MatrixType, CorrectionType>* baseSolver = new QuadraticIPOptSolver<MatrixType,CorrectionType>; baseSolver->verbosity_ = NumProc::QUIET; baseSolver->tolerance_ = baseTolerance; #else // First create a Gauss-seidel base solver TrustRegionGSStep<MatrixType, CorrectionType>* baseSolverStep = new TrustRegionGSStep<MatrixType, CorrectionType>; // Hack: the two-norm may not scale all that well, but it is fast! TwoNorm<CorrectionType>* baseNorm = new TwoNorm<CorrectionType>; ::LoopSolver<CorrectionType>* baseSolver = new ::LoopSolver<CorrectionType>(baseSolverStep, baseIterations, baseTolerance, baseNorm, Solver::QUIET); #endif // Make pre and postsmoothers TrustRegionGSStep<MatrixType, CorrectionType>* presmoother = new TrustRegionGSStep<MatrixType, CorrectionType>; TrustRegionGSStep<MatrixType, CorrectionType>* postsmoother = new TrustRegionGSStep<MatrixType, CorrectionType>; MonotoneMGStep<MatrixType, CorrectionType>* mmgStep = new MonotoneMGStep<MatrixType, CorrectionType>; mmgStep->setMGType(mu, nu1, nu2); mmgStep->ignoreNodes_ = &dirichletNodes; mmgStep->basesolver_ = baseSolver; mmgStep->setSmoother(presmoother, postsmoother); mmgStep->obstacleRestrictor_= new MandelObstacleRestrictor<CorrectionType>(); mmgStep->verbosity_ = Solver::QUIET; // ////////////////////////////////////////////////////////////////////////////////////// // Assemble a Laplace matrix to create a norm that's equivalent to the H1-norm // ////////////////////////////////////////////////////////////////////////////////////// BasisType basis(grid.leafGridView()); OperatorAssembler<BasisType,BasisType> operatorAssembler(basis, basis); LaplaceAssembler<GridType, typename BasisType::LocalFiniteElement, typename BasisType::LocalFiniteElement> laplaceStiffness; typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > ScalarMatrixType; ScalarMatrixType localA; operatorAssembler.assemble(laplaceStiffness, localA); if (h1SemiNorm_) delete h1SemiNorm_; ScalarMatrixType* A = new ScalarMatrixType(localA); h1SemiNorm_ = new H1SemiNorm<CorrectionType>(*A); innerSolver_ = std::shared_ptr<LoopSolver<CorrectionType> >(new ::LoopSolver<CorrectionType>(mmgStep, innerIterations_, innerTolerance_, h1SemiNorm_, Solver::REDUCED)); // ////////////////////////////////////////////////////////////////////////////////////// // Assemble a mass matrix to create a norm that's equivalent to the L2-norm // This will be used to monitor the gradient // ////////////////////////////////////////////////////////////////////////////////////// MassAssembler<GridType, typename BasisType::LocalFiniteElement, typename BasisType::LocalFiniteElement> massStiffness; ScalarMatrixType localMassMatrix; operatorAssembler.assemble(massStiffness, localMassMatrix); ScalarMatrixType* massMatrix = new ScalarMatrixType(localMassMatrix); l2Norm_ = std::make_shared<H1SemiNorm<CorrectionType> >(*massMatrix); // //////////////////////////////////////////////////////////// // Create Hessian matrix and its occupation structure // //////////////////////////////////////////////////////////// hessianMatrix_ = std::auto_ptr<MatrixType>(new MatrixType); Dune::MatrixIndexSet indices(grid_->size(1), grid_->size(1)); assembler_->getNeighborsPerVertex(indices); indices.exportIdx(*hessianMatrix_); // //////////////////////////////////// // Create the transfer operators // //////////////////////////////////// for (size_t k=0; k<mmgStep->mgTransfer_.size(); k++) delete(mmgStep->mgTransfer_[k]); mmgStep->mgTransfer_.resize(numLevels-1); #if defined THIRD_ORDER || defined SECOND_ORDER if (numLevels>1) { P1NodalBasis<typename GridType::LeafGridView,double> p1Basis(grid_->leafGridView()); PKtoP1MGTransfer<CorrectionType>* topTransferOp = new PKtoP1MGTransfer<CorrectionType>; topTransferOp->setup(basis,p1Basis); mmgStep->mgTransfer_.back() = topTransferOp; for (int i=0; i<mmgStep->mgTransfer_.size()-1; i++){ // Construct the local multigrid transfer matrix TruncatedCompressedMGTransfer<CorrectionType>* newTransferOp = new TruncatedCompressedMGTransfer<CorrectionType>; newTransferOp->setup(*grid_,i+1,i+2); mmgStep->mgTransfer_[i] = newTransferOp; } } #else for (size_t i=0; i<mmgStep->mgTransfer_.size(); i++){ // Construct the local multigrid transfer matrix TruncatedCompressedMGTransfer<CorrectionType>* newTransferOp = new TruncatedCompressedMGTransfer<CorrectionType>; newTransferOp->setup(*grid_,i,i+1); mmgStep->mgTransfer_[i] = newTransferOp;; } #endif // ////////////////////////////////////////////////////////// // Create obstacles // ////////////////////////////////////////////////////////// hasObstacle_.resize(basis.size(), true); mmgStep->hasObstacle_ = &hasObstacle_; } template <class BasisType, class VectorType> void TrustRegionSolver<BasisType,VectorType>::solve() { MonotoneMGStep<MatrixType,CorrectionType>* mgStep = NULL; // if the inner solver is a monotone multigrid set up a max-norm trust-region if (dynamic_cast<LoopSolver<CorrectionType>*>(innerSolver_.get())) { mgStep = dynamic_cast<MonotoneMGStep<MatrixType,CorrectionType>*>(dynamic_cast<LoopSolver<CorrectionType>*>(innerSolver_.get())->iterationStep_); } BasisType basis(grid_->leafGridView()); MaxNormTrustRegion<blocksize> trustRegion(basis.size(), initialTrustRegionRadius_); std::vector<BoxConstraint<field_type,blocksize> > trustRegionObstacles; // ///////////////////////////////////////////////////// // Trust-Region Solver // ///////////////////////////////////////////////////// double oldEnergy = assembler_->computeEnergy(x_, pointLoads_); bool recomputeGradientHessian = true; CorrectionType rhs; MatrixType stiffnessMatrix; for (int i=0; i<maxTrustRegionSteps_; i++) { Dune::Timer totalTimer; if (this->verbosity_ == Solver::FULL) { std::cout << "----------------------------------------------------" << std::endl; std::cout << " Trust-Region Step Number: " << i << ", radius: " << trustRegion.radius() << ", energy: " << oldEnergy << std::endl; std::cout << "----------------------------------------------------" << std::endl; } Dune::Timer gradientTimer; if (recomputeGradientHessian) { assembler_->assembleGradientAndHessian(x_, pointLoads_, rhs, *hessianMatrix_, i==0 // assemble occupation pattern only for the first call ); rhs *= -1; // The right hand side is the _negative_ gradient // Compute gradient norm to monitor convergence CorrectionType gradient = rhs; for (size_t j=0; j<gradient.size(); j++) for (int k=0; k<gradient[j].size(); k++) if ((*ignoreNodes_)[j][k]) gradient[j][k] = 0; if (this->verbosity_ == Solver::FULL) std::cout << "Gradient norm: " << l2Norm_->operator()(gradient) << std::endl; if (this->verbosity_ == Solver::FULL) std::cout << "Assembly took " << gradientTimer.elapsed() << " sec." << std::endl; // Transfer matrix data stiffnessMatrix = *hessianMatrix_; recomputeGradientHessian = false; } CorrectionType corr(rhs.size()); corr = 0; mgStep->setProblem(stiffnessMatrix, corr, rhs); trustRegionObstacles = trustRegion.obstacles(); mgStep->obstacles_ = &trustRegionObstacles; innerSolver_->preprocess(); /////////////////////////////// // Solve ! /////////////////////////////// std::cout << "Solve quadratic problem..." << std::endl; Dune::Timer solutionTimer; innerSolver_->solve(); std::cout << "Solving the quadratic problem took " << solutionTimer.elapsed() << " seconds." << std::endl; if (mgStep) corr = mgStep->getSol(); //std::cout << "Correction: " << std::endl << corr_global << std::endl; // Output correction for debugging Dune::VTKWriter<typename GridType::LeafGridView> vtkWriter(grid_->leafGridView()); Dune::BlockVector<Dune::FieldVector<double,3> > displacement(x_.size()); for (size_t j=0; j<x_.size(); j++) displacement[j] = x_[j] - identity_[j]; BasisType basis(grid_->leafGridView()); Dune::shared_ptr<VTKBasisGridFunction<BasisType,Dune::BlockVector<Dune::FieldVector<double,3> > > > vtkDisplacement = Dune::make_shared<VTKBasisGridFunction<BasisType,Dune::BlockVector<Dune::FieldVector<double,3> > > > (basis, displacement, "Displacement"); Dune::shared_ptr<VTKBasisGridFunction<BasisType,Dune::BlockVector<Dune::FieldVector<double,3> > > > vtkCorrection = Dune::make_shared<VTKBasisGridFunction<BasisType,Dune::BlockVector<Dune::FieldVector<double,3> > > > (basis, corr, "Correction"); Dune::shared_ptr<VTKBasisGridFunction<BasisType,Dune::BlockVector<Dune::FieldVector<double,3> > > > vtkGradient = Dune::make_shared<VTKBasisGridFunction<BasisType,Dune::BlockVector<Dune::FieldVector<double,3> > > > (basis, rhs, "Gradient"); vtkWriter.addVertexData(vtkDisplacement); vtkWriter.addVertexData(vtkCorrection); vtkWriter.addVertexData(vtkGradient); vtkWriter.write("hencky_correction_" + std::to_string(i+1)); if (this->verbosity_ == NumProc::FULL) std::cout << "Infinity norm of the correction: " << corr.infinity_norm() << std::endl; if (corr.infinity_norm() < this->tolerance_) { if (this->verbosity_ == NumProc::FULL) std::cout << "CORRECTION IS SMALL ENOUGH" << std::endl; if (this->verbosity_ != NumProc::QUIET) std::cout << i+1 << " trust-region steps were taken." << std::endl; break; } // //////////////////////////////////////////////////// // Check whether trust-region step can be accepted // //////////////////////////////////////////////////// SolutionType newIterate = x_; for (size_t j=0; j<newIterate.size(); j++) newIterate[j] += corr[j]; double energy = assembler_->computeEnergy(newIterate, pointLoads_); // compute the model decrease // It is $ m(x) - m(x+s) = -<g,s> - 0.5 <s, Hs> // Note that rhs = -g CorrectionType tmp(corr.size()); tmp = 0; hessianMatrix_->umv(corr, tmp); double modelDecrease = (rhs*corr) - 0.5 * (corr*tmp); double relativeModelDecrease = modelDecrease / std::fabs(energy); if (this->verbosity_ == NumProc::FULL) { std::cout << "Absolute model decrease: " << modelDecrease << ", functional decrease: " << oldEnergy - energy << std::endl; std::cout << "Relative model decrease: " << relativeModelDecrease << ", functional decrease: " << (oldEnergy - energy)/energy << std::endl; } assert(modelDecrease >= 0); if (energy >= oldEnergy) { if (this->verbosity_ == NumProc::FULL) printf("Richtung ist keine Abstiegsrichtung!\n"); } if (energy >= oldEnergy && (std::abs((oldEnergy-energy)/energy) < 1e-9 || relativeModelDecrease < 1e-9)) { if (this->verbosity_ == NumProc::FULL) std::cout << "Suspecting rounding problems" << std::endl; if (this->verbosity_ != NumProc::QUIET) std::cout << i+1 << " trust-region steps were taken." << std::endl; x_ = newIterate; break; } // ////////////////////////////////////////////// // Check for acceptance of the step // ////////////////////////////////////////////// if ( (oldEnergy-energy) / modelDecrease > 0.9) { // very successful iteration x_ = newIterate; trustRegion.scale(2); // current energy becomes 'oldEnergy' for the next iteration oldEnergy = energy; recomputeGradientHessian = true; } else if ( (oldEnergy-energy) / modelDecrease > 0.01 || std::abs(oldEnergy-energy) < 1e-12) { // successful iteration x_ = newIterate; // current energy becomes 'oldEnergy' for the next iteration oldEnergy = energy; recomputeGradientHessian = true; } else { // unsuccessful iteration // Decrease the trust-region radius trustRegion.scale(0.5); if (this->verbosity_ == NumProc::FULL) std::cout << "Unsuccessful iteration!" << std::endl; } std::cout << "iteration took " << totalTimer.elapsed() << " sec." << std::endl; } }