#ifndef RIGID_BODY_MOTION_HH #define RIGID_BODY_MOTION_HH #include <dune/common/fvector.hh> #include "rotation.hh" /** \brief A rigid-body motion in, R^d, i.e., a member of SE(d) */ template <int dim, class T=double> struct RigidBodyMotion { /** \brief Type of an infinitesimal rigid body motion */ typedef Dune::FieldVector<T, dim + Rotation<dim,T>::TangentVector::size> TangentVector; /** \brief Type of an infinitesimal rigid body motion */ typedef Dune::FieldVector<T, dim + Rotation<dim,T>::EmbeddedTangentVector::size> EmbeddedTangentVector; /** \brief The type used for coordinates */ typedef T ctype; /** \brief Default constructor */ RigidBodyMotion() {} /** \brief Constructor from a translation and a rotation */ RigidBodyMotion(const Dune::FieldVector<ctype, dim>& translation, const Rotation<dim,ctype>& rotation) : r(translation), q(rotation) {} /** \brief The exponential map from a given point $p \in SE(d)$. Why the template parameter? Well, it should work with both TangentVector and EmbeddedTangentVector. In general these differ and we could just have two exp methods. However in 2d they do _not_ differ, and then the compiler complains about having two methods with the same signature. */ template <class TVector> static RigidBodyMotion<dim,ctype> exp(const RigidBodyMotion<dim,ctype>& p, const TVector& v) { RigidBodyMotion<dim,ctype> result; // Add translational correction for (int i=0; i<dim; i++) result.r[i] = p.r[i] + v[i]; // Add rotational correction typedef typename Dune::SelectType<Dune::is_same<TVector,TangentVector>::value, typename Rotation<dim,ctype>::TangentVector, typename Rotation<dim,ctype>::EmbeddedTangentVector>::Type RotationTangentVector; RotationTangentVector qCorr; for (int i=0; i<RotationTangentVector::size; i++) qCorr[i] = v[dim+i]; result.q = Rotation<dim,ctype>::exp(p.q, qCorr); return result; } /** \brief Compute geodesic distance from a to b */ static T distance(const RigidBodyMotion<dim,ctype>& a, const RigidBodyMotion<dim,ctype>& b) { T euclideanDistanceSquared = (a.r - b.r).two_norm2(); T rotationDistance = Rotation<dim,ctype>::distance(a.q, b.q); return std::sqrt(euclideanDistanceSquared + rotationDistance*rotationDistance); } /** \brief Compute difference vector from a to b on the tangent space of a */ static TangentVector difference(const RigidBodyMotion<dim,ctype>& a, const RigidBodyMotion<dim,ctype>& b) { TangentVector result; // Usual linear difference for (int i=0; i<dim; i++) result[i] = a.r[i] - b.r[i]; // Subtract orientations on the tangent space of 'a' typename Rotation<dim,ctype>::TangentVector v = Rotation<dim,ctype>::difference(a.q, b.q); // Compute difference on T_a SO(3) for (int i=0; i<Rotation<dim,ctype>::TangentVector::size; i++) result[i+dim] = v[i]; return result; } static EmbeddedTangentVector derivativeOfDistanceSquaredWRTSecondArgument(const RigidBodyMotion<dim,ctype>& a, const RigidBodyMotion<dim,ctype>& b) { // linear part Dune::FieldVector<ctype,dim> linearDerivative = a.r; linearDerivative -= b.r; linearDerivative *= -2; // rotation part typename Rotation<dim,ctype>::EmbeddedTangentVector rotationDerivative = Rotation<dim,ctype>::derivativeOfDistanceSquaredWRTSecondArgument(a.q, b.q); return concat(linearDerivative, rotationDerivative); } /** \brief Compute the Hessian of the squared distance function keeping the first argument fixed */ static Dune::FieldMatrix<double,7,7> secondDerivativeOfDistanceSquaredWRTSecondArgument(const RigidBodyMotion<dim,ctype> & p, const RigidBodyMotion<dim,ctype> & q) { Dune::FieldMatrix<double,7,7> result(0); // The linear part Dune::FieldMatrix<double,3,3> linearPart = RealTuple<3>::secondDerivativeOfDistanceSquaredWRTSecondArgument(p.r,q.r); for (int i=0; i<3; i++) for (int j=0; j<3; j++) result[i][j] = linearPart[i][j]; // The rotation part Dune::FieldMatrix<double,4,4> rotationPart = Rotation<dim,ctype>::secondDerivativeOfDistanceSquaredWRTSecondArgument(p.q,q.q); for (int i=0; i<4; i++) for (int j=0; j<4; j++) result[3+i][3+j] = rotationPart[i][j]; return result; } /** \brief Compute the mixed second derivate \partial d^2 / \partial da db Unlike the distance itself the squared distance is differentiable at zero */ static Dune::FieldMatrix<double,7,7> secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(const RigidBodyMotion<dim,ctype> & p, const RigidBodyMotion<dim,ctype> & q) { Dune::FieldMatrix<double,7,7> result(0); // The linear part Dune::FieldMatrix<double,3,3> linearPart = RealTuple<3>::secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(p.r,q.r); for (int i=0; i<3; i++) for (int j=0; j<3; j++) result[i][j] = linearPart[i][j]; // The rotation part Dune::FieldMatrix<double,4,4> rotationPart = Rotation<dim,ctype>::secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument(p.q,q.q); for (int i=0; i<4; i++) for (int j=0; j<4; j++) result[3+i][3+j] = rotationPart[i][j]; return result; } /** \brief Compute the third derivative \partial d^3 / \partial dq^3 Unlike the distance itself the squared distance is differentiable at zero */ static Tensor3<double,7,7,7> thirdDerivativeOfDistanceSquaredWRTSecondArgument(const RigidBodyMotion<dim,ctype> & p, const RigidBodyMotion<dim,ctype> & q) { Tensor3<double,7,7,7> result(0); // The linear part Tensor3<double,3,3,3> linearPart = RealTuple<3>::thirdDerivativeOfDistanceSquaredWRTSecondArgument(p.r,q.r); for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) result[i][j][k] = linearPart[i][j][k]; // The rotation part Tensor3<double,4,4,4> rotationPart = Rotation<dim,ctype>::thirdDerivativeOfDistanceSquaredWRTSecondArgument(p.q,q.q); for (int i=0; i<4; i++) for (int j=0; j<4; j++) for (int k=0; k<4; k++) result[3+i][3+j][3+j] = rotationPart[i][j][k]; return result; } /** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2 Unlike the distance itself the squared distance is differentiable at zero */ static Tensor3<double,7,7,7> thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(const RigidBodyMotion<dim,ctype> & p, const RigidBodyMotion<dim,ctype> & q) { Tensor3<double,7,7,7> result(0); // The linear part Tensor3<double,3,3,3> linearPart = RealTuple<3>::thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(p.r,q.r); for (int i=0; i<3; i++) for (int j=0; j<3; j++) for (int k=0; k<3; k++) result[i][j][k] = linearPart[i][j][k]; // The rotation part Tensor3<double,4,4,4> rotationPart = Rotation<dim,ctype>::thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument(p.q,q.q); for (int i=0; i<4; i++) for (int j=0; j<4; j++) for (int k=0; k<4; k++) result[3+i][3+j][3+j] = rotationPart[i][j][k]; return result; } /** \brief Project tangent vector of R^n onto the tangent space */ EmbeddedTangentVector projectOntoTangentSpace(const EmbeddedTangentVector& v) const { DUNE_THROW(Dune::NotImplemented, "!"); } /** \brief Compute an orthonormal basis of the tangent space of SE(3). This basis is of course not globally continuous. */ Dune::FieldMatrix<double,6,7> orthonormalFrame() const { Dune::FieldMatrix<double,6,7> result(0); // Get the R^d part for (int i=0; i<dim; i++) result[i][i] = 1; Dune::FieldMatrix<double,3,4> SO3Part = q.orthonormalFrame(); for (int i=0; i<dim; i++) for (int j=0; j<4; j++) result[3+i][3+j] = SO3Part[i][j]; return result; } // Translational part Dune::FieldVector<ctype, dim> r; // Rotational part Rotation<dim,ctype> q; private: /** \brief Concatenate two FieldVectors */ template <int N, int M> static Dune::FieldVector<ctype,N+M> concat(const Dune::FieldVector<ctype,N>& a, const Dune::FieldVector<ctype,M>& b) { Dune::FieldVector<ctype,N+M> result; for (int i=0; i<N; i++) result[i] = a[i]; for (int i=0; i<M; i++) result[i+N] = b[i]; return result; } }; //! Send configuration to output stream template <int dim, class ctype> std::ostream& operator<< (std::ostream& s, const RigidBodyMotion<dim,ctype>& c) { s << "(" << c.r << ") (" << c.q << ")"; return s; } #endif