#include <dune/istl/bcrsmatrix.hh> #include <dune/common/fmatrix.hh> #include <dune/istl/matrixindexset.hh> #include <dune/istl/matrix.hh> #include <dune/geometry/quadraturerules.hh> #include <dune/localfunctions/lagrange/p1.hh> #include <dune/gfe/rodlocalstiffness.hh> template <class GridView> void RodAssembler<GridView,3>:: assembleGradient(const std::vector<RigidBodyMotion<double,3> >& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const { using namespace Dune; if (sol.size()!=this->basis_.size()) DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); grad.resize(sol.size()); grad = 0; ElementIterator it = this->basis_.getGridView().template begin<0>(); ElementIterator endIt = this->basis_.getGridView().template end<0>(); // Loop over all elements for (; it!=endIt; ++it) { // A 1d grid has two vertices static const int nDofs = 2; // Extract local solution std::vector<RigidBodyMotion<double,3> > localSolution(nDofs); for (int i=0; i<nDofs; i++) localSolution[i] = sol[this->basis_.index(*it,i)]; // Assemble local gradient std::vector<FieldVector<double,blocksize> > localGradient(nDofs); this->localStiffness_->assembleGradient(*it, this->basis_.getLocalFiniteElement(*it), localSolution, localGradient); // Add to global gradient for (int i=0; i<nDofs; i++) grad[this->basis_.index(*it,i)] += localGradient[i]; } } template <class GridView> void RodAssembler<GridView,3>:: getStrain(const std::vector<RigidBodyMotion<double,3> >& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& strain) const { using namespace Dune; const typename GridView::Traits::IndexSet& indexSet = this->basis_.getGridView().indexSet(); if (sol.size()!=this->basis_.size()) DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); // Strain defined on each element strain.resize(indexSet.size(0)); strain = 0; ElementIterator it = this->basis_.getGridView().template begin<0>(); ElementIterator endIt = this->basis_.getGridView().template end<0>(); // Loop over all elements for (; it!=endIt; ++it) { int elementIdx = indexSet.index(*it); // Extract local solution on this element Dune::P1LocalFiniteElement<double,double,gridDim> localFiniteElement; int numOfBaseFct = localFiniteElement.localCoefficients().size(); std::vector<RigidBodyMotion<double,3> > localSolution(2); for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[indexSet.subIndex(*it,i,gridDim)]; // Get quadrature rule const int polOrd = 2; const QuadratureRule<double, gridDim>& quad = QuadratureRules<double, gridDim>::rule(it->type(), polOrd); for (int pt=0; pt<quad.size(); pt++) { // Local position of the quadrature point const FieldVector<double,gridDim>& quadPos = quad[pt].position(); double weight = quad[pt].weight() * it->geometry().integrationElement(quadPos); FieldVector<double,blocksize> localStrain = dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->getStrain(localSolution, *it, quad[pt].position()); // Sum it all up strain[elementIdx].axpy(weight, localStrain); } // ///////////////////////////////////////////////////////////////////////// // We want the average strain per element. Therefore we have to divide // the integral we just computed by the element volume. // ///////////////////////////////////////////////////////////////////////// // we know the element is a line, therefore the integration element is the volume FieldVector<double,1> dummyPos(0.5); strain[elementIdx] /= it->geometry().integrationElement(dummyPos); } } template <class GridView> void RodAssembler<GridView,3>:: getStress(const std::vector<RigidBodyMotion<double,3> >& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& stress) const { // Get the strain getStrain(sol,stress); // Get reference strain Dune::BlockVector<Dune::FieldVector<double, blocksize> > referenceStrain; getStrain(dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->referenceConfiguration_, referenceStrain); // Linear diagonal constitutive law for (size_t i=0; i<stress.size(); i++) { for (int j=0; j<3; j++) { stress[i][j] = (stress[i][j] - referenceStrain[i][j]) * dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->A_[j]; stress[i][j+3] = (stress[i][j+3] - referenceStrain[i][j+3]) * dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->K_[j]; } } } template <class GridView> template <class PatchGridView> Dune::FieldVector<double,6> RodAssembler<GridView,3>:: getResultantForce(const BoundaryPatch<PatchGridView>& boundary, const std::vector<RigidBodyMotion<double,3> >& sol) const { using namespace Dune; // if (gridView_ != &boundary.gridView()) // DUNE_THROW(Dune::Exception, "The boundary patch has to match the grid view of the assembler!"); const typename GridView::Traits::IndexSet& indexSet = this->basis_.getGridView().indexSet(); if (sol.size()!=indexSet.size(gridDim)) DUNE_THROW(Exception, "Solution vector doesn't match the grid!"); FieldVector<double,3> canonicalStress(0); FieldVector<double,3> canonicalTorque(0); // Loop over the given boundary typename BoundaryPatch<PatchGridView>::iterator it = boundary.begin(); typename BoundaryPatch<PatchGridView>::iterator endIt = boundary.end(); for (; it!=endIt; ++it) { // ////////////////////////////////////////////// // Compute force across this boundary face // ////////////////////////////////////////////// double pos = it->geometryInInside().corner(0); std::vector<RigidBodyMotion<double,3> > localSolution(2); localSolution[0] = sol[indexSet.subIndex(*it->inside(),0,1)]; localSolution[1] = sol[indexSet.subIndex(*it->inside(),1,1)]; std::vector<RigidBodyMotion<double,3> > localRefConf(2); localRefConf[0] = dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->referenceConfiguration_[indexSet.subIndex(*it->inside(),0,1)]; localRefConf[1] = dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->referenceConfiguration_[indexSet.subIndex(*it->inside(),1,1)]; FieldVector<double, blocksize> strain = dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->getStrain(localSolution, *it->inside(), pos); FieldVector<double, blocksize> referenceStrain = dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->getStrain(localRefConf, *it->inside(), pos); FieldVector<double,3> localStress; for (int i=0; i<3; i++) localStress[i] = (strain[i] - referenceStrain[i]) * dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->A_[i]; FieldVector<double,3> localTorque; for (int i=0; i<3; i++) localTorque[i] = (strain[i+3] - referenceStrain[i+3]) * dynamic_cast<RodLocalStiffness<GridView, double>* >(this->localStiffness_)->K_[i]; // Transform stress given with respect to the basis given by the three directors to // the canonical basis of R^3 FieldMatrix<double,3,3> orientationMatrix; sol[indexSet.subIndex(*it->inside(),it->indexInInside(),1)].q.matrix(orientationMatrix); orientationMatrix.umv(localStress, canonicalStress); orientationMatrix.umv(localTorque, canonicalTorque); // Reverse transformation to make sure we did the correct thing // assert( std::abs(localStress[0]-canonicalStress*sol[0].q.director(0)) < 1e-6 ); // assert( std::abs(localStress[1]-canonicalStress*sol[0].q.director(1)) < 1e-6 ); // assert( std::abs(localStress[2]-canonicalStress*sol[0].q.director(2)) < 1e-6 ); // Multiply force times boundary normal to get the transmitted force canonicalStress *= it->unitOuterNormal(FieldVector<double,0>(0))[0]; canonicalTorque *= it->unitOuterNormal(FieldVector<double,0>(0))[0]; } Dune::FieldVector<double,6> result; for (int i=0; i<3; i++) { result[i] = canonicalStress[i]; result[i+3] = canonicalTorque[i]; } return result; } template <class GridView> void RodAssembler<GridView,2>:: assembleMatrix(const std::vector<RigidBodyMotion<double,2> >& sol, Dune::BCRSMatrix<MatrixBlock>& matrix) { Dune::MatrixIndexSet neighborsPerVertex; this->getNeighborsPerVertex(neighborsPerVertex); matrix = 0; ElementIterator it = this->basis_.getGridView().template begin<0>(); ElementIterator endit = this->basis_.getGridView().template end<0> (); Dune::Matrix<MatrixBlock> mat; for( ; it != endit; ++it ) { const int numOfBaseFct = 2; // Extract local solution std::vector<RigidBodyMotion<double,2> > localSolution(numOfBaseFct); for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[this->basis_.index(*it,i)]; // setup matrix getLocalMatrix( *it, localSolution, mat); // Add element matrix to global stiffness matrix for(int i=0; i<numOfBaseFct; i++) { int row = this->basis_.index(*it,i); for (int j=0; j<numOfBaseFct; j++ ) { int col = this->basis_.index(*it,j); matrix[row][col] += mat[i][j]; } } } } template <class GridView> void RodAssembler<GridView,2>:: getLocalMatrix( EntityType &entity, const std::vector<RigidBodyMotion<double,2> >& localSolution, Dune::Matrix<MatrixBlock>& localMat) const { /* ndof is the number of vectors of the element */ int ndof = localSolution.size(); localMat.setSize(ndof,ndof); localMat = 0; Dune::P1LocalFiniteElement<double,double,gridDim> localFiniteElement; // Get quadrature rule const Dune::QuadratureRule<double, gridDim>& quad = Dune::QuadratureRules<double, gridDim>::rule(entity.type(), 2); /* Loop over all integration points */ for (int ip=0; ip<quad.size(); ip++) { // Local position of the quadrature point const Dune::FieldVector<double,gridDim>& quadPos = quad[ip].position(); // calc Jacobian inverse before integration element is evaluated const Dune::FieldMatrix<double,gridDim,gridDim>& inv = entity.geometry().jacobianInverseTransposed(quadPos); const double integrationElement = entity.geometry().integrationElement(quadPos); /* Compute the weight of the current integration point */ double weight = quad[ip].weight() * integrationElement; /**********************************************/ /* compute gradients of the shape functions */ /**********************************************/ std::vector<Dune::FieldMatrix<double,1,gridDim> > referenceElementGradients(ndof); localFiniteElement.localBasis().evaluateJacobian(quadPos,referenceElementGradients); std::vector<Dune::FieldVector<double,gridDim> > shapeGrad(ndof); // multiply with jacobian inverse for (int dof=0; dof<ndof; dof++) inv.mv(referenceElementGradients[dof][0], shapeGrad[dof]); std::vector<Dune::FieldVector<double,1> > shapeFunction; localFiniteElement.localBasis().evaluateFunction(quadPos,shapeFunction); // ////////////////////////////////// // Interpolate // ////////////////////////////////// double x_s = localSolution[0].r[0]*shapeGrad[0][0] + localSolution[1].r[0]*shapeGrad[1][0]; double y_s = localSolution[0].r[1]*shapeGrad[0][0] + localSolution[1].r[1]*shapeGrad[1][0]; double theta = localSolution[0].q.angle_*shapeFunction[0] + localSolution[1].q.angle_*shapeFunction[1]; for (int i=0; i<localMat.N(); i++) { for (int j=0; j<localMat.M(); j++) { // \partial J^2 / \partial x_i \partial x_j localMat[i][j][0][0] += weight * shapeGrad[i][0] * shapeGrad[j][0] * (A1 * cos(theta) * cos(theta) + A3 * sin(theta) * sin(theta)); // \partial J^2 / \partial x_i \partial y_j localMat[i][j][0][1] += weight * shapeGrad[i][0] * shapeGrad[j][0] * (-A1 + A3) * sin(theta)* cos(theta); // \partial J^2 / \partial x_i \partial theta_j localMat[i][j][0][2] += weight * shapeGrad[i][0] * shapeFunction[j] * (-A1 * (x_s*sin(theta) + y_s*cos(theta)) * cos(theta) - A1* (x_s*cos(theta) - y_s*sin(theta)) * sin(theta) +A3 * (x_s*cos(theta) - y_s*sin(theta)) * sin(theta) +A3 * (x_s*sin(theta) + y_s*cos(theta) - 1) * cos(theta)); // \partial J^2 / \partial y_i \partial x_j localMat[i][j][1][0] += weight * shapeGrad[i][0] * shapeGrad[j][0] * (-A1 * sin(theta)* cos(theta) + A3 * cos(theta) * sin(theta)); // \partial J^2 / \partial y_i \partial y_j localMat[i][j][1][1] += weight * shapeGrad[i][0] * shapeGrad[j][0] * (A1 * sin(theta)*sin(theta) + A3 * cos(theta)*cos(theta)); // \partial J^2 / \partial y_i \partial theta_j localMat[i][j][1][2] += weight * shapeGrad[i][0] * shapeFunction[j] * (A1 * (x_s * sin(theta) + y_s * cos(theta)) * sin(theta) -A1 * (x_s * cos(theta) - y_s * sin(theta)) * cos(theta) +A3 * (x_s * cos(theta) - y_s * sin(theta)) * cos(theta) -A3 * (x_s * sin(theta) + y_s * cos(theta) - 1) * sin(theta)); // \partial J^2 / \partial theta_i \partial x_j localMat[i][j][2][0] += weight * shapeFunction[i] * shapeGrad[j][0] * (-A1 * (x_s*sin(theta) + y_s*cos(theta)) * cos(theta) - A1* (x_s*cos(theta) - y_s*sin(theta)) * sin(theta) +A3 * (x_s*cos(theta) - y_s*sin(theta)) * sin(theta) +A3 * (x_s*sin(theta) + y_s*cos(theta) - 1) * cos(theta)); // \partial J^2 / \partial theta_i \partial y_j localMat[i][j][2][1] += weight * shapeFunction[i] * shapeGrad[j][0] * (A1 * (x_s * sin(theta) + y_s * cos(theta)) * sin(theta) -A1 * (x_s * cos(theta) - y_s * sin(theta)) * cos(theta) +A3 * (x_s * cos(theta) - y_s * sin(theta)) * cos(theta) -A3 * (x_s * sin(theta) + y_s * cos(theta) - 1) * sin(theta)); // \partial J^2 / \partial theta_i \partial theta_j localMat[i][j][2][2] += weight * B * shapeGrad[i][0] * shapeGrad[j][0]; localMat[i][j][2][2] += weight * shapeFunction[i] * shapeFunction[j] * (+ A1 * (x_s*sin(theta) + y_s*cos(theta)) * (x_s*sin(theta) + y_s*cos(theta)) + A1 * (x_s*cos(theta) - y_s*sin(theta)) * (-x_s*cos(theta)+ y_s*sin(theta)) + A3 * (x_s*cos(theta) - y_s*sin(theta)) * (x_s*cos(theta) - y_s*sin(theta)) - A3 * (x_s*sin(theta) + y_s*cos(theta) - 1) * (x_s*sin(theta) + y_s*cos(theta))); } } } #if 0 static int eleme = 0; printf("********* Element %d **********\n", eleme++); for (int row=0; row<matSize; row++) { for (int rcomp=0; rcomp<dim; rcomp++) { for (int col=0; col<matSize; col++) { for (int ccomp=0; ccomp<dim; ccomp++) std::cout << mat[row][col][rcomp][ccomp] << " "; std::cout << " "; } std::cout << std::endl; } std::cout << std::endl; } exit(0); #endif } template <class GridView> void RodAssembler<GridView,2>:: assembleGradient(const std::vector<RigidBodyMotion<double,2> >& sol, Dune::BlockVector<Dune::FieldVector<double, blocksize> >& grad) const { if (sol.size()!=this->basis_.size()) DUNE_THROW(Dune::Exception, "Solution vector doesn't match the grid!"); grad.resize(sol.size()); grad = 0; ElementIterator it = this->basis_.getGridView().template begin<0>(); ElementIterator endIt = this->basis_.getGridView().template end<0>(); // Loop over all elements for (; it!=endIt; ++it) { // Extract local solution on this element Dune::P1LocalFiniteElement<double,double,gridDim> localFiniteElement; const int numOfBaseFct = localFiniteElement.localBasis().size(); RigidBodyMotion<double,2> localSolution[numOfBaseFct]; for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[this->basis_.index(*it,i)]; // Get quadrature rule const Dune::QuadratureRule<double, gridDim>& quad = Dune::QuadratureRules<double, gridDim>::rule(it->type(), 2); for (int pt=0; pt<quad.size(); pt++) { // Local position of the quadrature point const Dune::FieldVector<double,gridDim>& quadPos = quad[pt].position(); const Dune::FieldMatrix<double,1,1>& inv = it->geometry().jacobianInverseTransposed(quadPos); const double integrationElement = it->geometry().integrationElement(quadPos); double weight = quad[pt].weight() * integrationElement; /**********************************************/ /* compute gradients of the shape functions */ /**********************************************/ std::vector<Dune::FieldMatrix<double,1,gridDim> > referenceElementGradients(numOfBaseFct); localFiniteElement.localBasis().evaluateJacobian(quadPos,referenceElementGradients); std::vector<Dune::FieldVector<double,gridDim> > shapeGrad(numOfBaseFct); // multiply with jacobian inverse for (int dof=0; dof<numOfBaseFct; dof++) inv.mv(referenceElementGradients[dof][0], shapeGrad[dof]); // Get the values of the shape functions std::vector<Dune::FieldVector<double,1> > shapeFunction; localFiniteElement.localBasis().evaluateFunction(quadPos,shapeFunction); // ////////////////////////////////// // Interpolate // ////////////////////////////////// double x_s = localSolution[0].r[0]*shapeGrad[0][0] + localSolution[1].r[0]*shapeGrad[1][0]; double y_s = localSolution[0].r[1]*shapeGrad[0][0] + localSolution[1].r[1]*shapeGrad[1][0]; double theta_s = localSolution[0].q.angle_*shapeGrad[0][0] + localSolution[1].q.angle_*shapeGrad[1][0]; double theta = localSolution[0].q.angle_*shapeFunction[0] + localSolution[1].q.angle_*shapeFunction[1]; // ///////////////////////////////////////////// // Sum it all up // ///////////////////////////////////////////// double partA1 = A1 * (x_s * cos(theta) - y_s * sin(theta)); double partA3 = A3 * (x_s * sin(theta) + y_s * cos(theta) - 1); for (int dof=0; dof<numOfBaseFct; dof++) { int globalDof = this->basis_.index(*it,dof); //printf("globalDof: %d partA1: %g partA3: %g\n", globalDof, partA1, partA3); // \partial J / \partial x^i grad[globalDof][0] += weight * (partA1 * cos(theta) + partA3 * sin(theta)) * shapeGrad[dof][0]; // \partial J / \partial y^i grad[globalDof][1] += weight * (-partA1 * sin(theta) + partA3 * cos(theta)) * shapeGrad[dof][0]; // \partial J / \partial \theta^i grad[globalDof][2] += weight * (B * theta_s * shapeGrad[dof][0] + partA1 * (-x_s * sin(theta) - y_s * cos(theta)) * shapeFunction[dof] + partA3 * ( x_s * cos(theta) - y_s * sin(theta)) * shapeFunction[dof]); } } } } template <class GridView> double RodAssembler<GridView,2>:: computeEnergy(const std::vector<RigidBodyMotion<double,2> >& sol) const { double energy = 0; if (sol.size()!=this->basis_.size()) DUNE_THROW(Dune::Exception, "Solution vector doesn't match the grid!"); ElementIterator it = this->basis_.getGridView().template begin<0>(); ElementIterator endIt = this->basis_.getGridView().template end<0>(); // Loop over all elements for (; it!=endIt; ++it) { // Extract local solution on this element Dune::P1LocalFiniteElement<double,double,gridDim> localFiniteElement; int numOfBaseFct = localFiniteElement.localBasis().size(); RigidBodyMotion<double,2> localSolution[numOfBaseFct]; for (int i=0; i<numOfBaseFct; i++) localSolution[i] = sol[this->basis_.index(*it,i)]; // Get quadrature rule const Dune::QuadratureRule<double, gridDim>& quad = Dune::QuadratureRules<double, gridDim>::rule(it->type(), 2); for (int pt=0; pt<quad.size(); pt++) { // Local position of the quadrature point const Dune::FieldVector<double,gridDim>& quadPos = quad[pt].position(); const Dune::FieldMatrix<double,1,1>& inv = it->geometry().jacobianInverseTransposed(quadPos); const double integrationElement = it->geometry().integrationElement(quadPos); double weight = quad[pt].weight() * integrationElement; /**********************************************/ /* compute gradients of the shape functions */ /**********************************************/ std::vector<Dune::FieldMatrix<double,1,gridDim> > referenceElementGradients(numOfBaseFct); localFiniteElement.localBasis().evaluateJacobian(quadPos,referenceElementGradients); std::vector<Dune::FieldVector<double,gridDim> > shapeGrad(numOfBaseFct); // multiply with jacobian inverse for (int dof=0; dof<numOfBaseFct; dof++) inv.mv(referenceElementGradients[dof][0], shapeGrad[dof]); // Get the value of the shape functions std::vector<Dune::FieldVector<double,1> > shapeFunction; localFiniteElement.localBasis().evaluateFunction(quadPos,shapeFunction); // ////////////////////////////////// // Interpolate // ////////////////////////////////// double x_s = localSolution[0].r[0]*shapeGrad[0][0] + localSolution[1].r[0]*shapeGrad[1][0]; double y_s = localSolution[0].r[1]*shapeGrad[0][0] + localSolution[1].r[1]*shapeGrad[1][0]; double theta_s = localSolution[0].q.angle_*shapeGrad[0][0] + localSolution[1].q.angle_*shapeGrad[1][0]; double theta = localSolution[0].q.angle_*shapeFunction[0] + localSolution[1].q.angle_*shapeFunction[1]; // ///////////////////////////////////////////// // Sum it all up // ///////////////////////////////////////////// double partA1 = x_s * cos(theta) - y_s * sin(theta); double partA3 = x_s * sin(theta) + y_s * cos(theta) - 1; energy += 0.5 * weight * (B * theta_s * theta_s + A1 * partA1 * partA1 + A3 * partA3 * partA3); } } return energy; }