Skip to content
Snippets Groups Projects
Commit 90a5cb38 authored by Praetorius, Simon's avatar Praetorius, Simon
Browse files

documentation of operator terms updated

parent 2f5be996
No related branches found
No related tags found
No related merge requests found
\documentclass[10pt,a4paper]{article}
\usepackage[a4paper,top=1.5cm,bottom=1.5cm]{geometry}
\usepackage{fancyhdr}
% \usepackage[utf8x]{inputenc}
% \usepackage{ucs}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{array}
\usepackage{longtable}
\pagestyle{fancy}
\fancyhf{}
\fancyhead[R]{\today}
\renewcommand{\headrulewidth}{0pt}
\begin{document}\small
\setlength{\LTleft}{-2.5cm}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\begin{longtable}{p{0.275\textwidth}|p{1\textwidth}}
\hline
\multicolumn{2}{c}{\scriptsize Zero-Order-Terms}\\
\hline
$c\;u$ & \texttt{Simple\_ZOT}($c\in\mathbb{R}$) \\
$f(\vec{x})\;u$ & \texttt{CoordsAtQP\_ZOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v)\;u$ & \texttt{VecAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$) \\
$f(v, \vec{x})\; u$ & \texttt{VecAndCoordsAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v)\;g(w)\;u$ & \texttt{MultVecAtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$, $g:\mathbb{R}\rightarrow\mathbb{R}$) \\
$f(v, w)\;u$ & \texttt{Vec2AtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$) \\
$f(v_1, v_2, v_3)\;u$ & \texttt{Vec3AtQP\_ZOT}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$) \\
$f(\nabla v)\;u$ & \texttt{FctGradient\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(\nabla v, \vec{x})\;u$ & \texttt{FctGradientCoords\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v, \nabla v)\;u$ & \texttt{VecAndGradAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v, \nabla v, \vec{x})\;u$ & \texttt{VecGradCoordsAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v, \nabla v, w)\;u$ & \texttt{Vec2AndGradAtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}\rightarrow\mathbb{R}$) \\
$f(v, \nabla w)\;u$ & \texttt{VecAndGradVecAtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v_1, v_2 \nabla v_3)\;u$ & \texttt{Vec2AndGradVecAtQP\_ZOT}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v, \nabla w_1, \nabla w_2)\;u$ & \texttt{VecAndGradVec2AtQP\_ZOT}($v,w_1,w_2\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(v,w, \nabla v, \nabla w)\;u$ & \texttt{Vec2AndGrad2AtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(\{v_i\}_i)\;u$ & \texttt{VecOfDOFVecsAtQP\_ZOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle \rangle$, $f:$\small{vector}$\langle\mathbb{R}\rangle\rightarrow\mathbb{R}$) \\
$f(\{\nabla v_i\}_i)\;u$ & \texttt{VecOfGradientsAtQP\_ZOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $f:$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}$) \\
$f(v, \{\nabla w_i\}_i)\;u$ & \texttt{VecAndVecOfGradientsAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$,\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $f:\mathbb{R}\times$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}$) \\
$\partial_1 v_1\,[+\partial_2 v_2 + \partial_3 v_3]\;u$ & \texttt{VecDivergence\_ZOT}($v_1\,[,v_2,v_3]\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$) \\
$f(\{v_i\}_i, \{\nabla w_j\}_j, \vec{x})\;u$ & \texttt{General\_ZOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$,\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $f:\mathbb{R}^n\times$\small{vector}$\langle\mathbb{R}\rangle\times$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}$) \\
\hline
%==============================================
\multicolumn{2}{c}{\scriptsize First-Order-Terms, sign in strong formulation: + (for flag: GRD\_PHI)}\\
\hline
$\vec{1} \cdot \nabla u$ & \texttt{Simple\_FOT}() \\
$c\,\vec{1} \cdot \nabla u$ & \texttt{FactorSimple\_FOT}($c\in\mathbb{R}$) \\
$\vec{b} \cdot \nabla u$ & \texttt{Vector\_FOT}($b\in\mathbb{R}^n$) \\
$v\cdot w\cdot\vec{b}\cdot\nabla u$ & \texttt{Vec2AtQP\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $b\in\mathbb{R}^n$) \\
$f(v)\,\vec{b} \cdot \nabla u$ & \texttt{VecAtQP\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
$f(\vec{x})\,\vec{1} \cdot \nabla u$ & \texttt{CoordsAtQP\_FOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$f(\vec{x})\,\vec{b} \cdot \nabla u$ & \texttt{VecCoordsAtQP\_FOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
$f(\vec{x})\cdot v\cdot\vec{b}\cdot\nabla u$ & \texttt{FctVecAtQP\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$,$f:\mathbb{R}^n\rightarrow\mathbb{R}$,$b\in\mathbb{R}^n$) \\
$v_1\cdot f(v_2,v_3)\,\vec{b} \cdot \nabla u$ & \texttt{Vec3FctAtQP\_FOT}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
$f(v,w,\nabla v)\,\vec{b} \cdot \nabla u$ & \texttt{Vec2AndGradAtQP\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
$F(v) \cdot \nabla u$ & \texttt{VectorFct\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}\rightarrow\mathbb{R}^n$) \\
$F(\nabla v) \cdot \nabla u$ & \texttt{VectorGradient\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
$F(\vec{x}) \cdot \nabla u$ & \texttt{VecFctAtQP\_FOT}($F:\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
$F(v, \nabla w) \cdot \nabla u$ & \texttt{VecGrad\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
$F(\nabla v, \nabla w) \cdot \nabla u$ & \texttt{FctGrad2\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
$F(v_1, v_2,\nabla v_3) \cdot \nabla u$ & \texttt{Vec2Grad\_FOT\footnote[1]{* available on request}}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
$F(\vec{v}) \cdot \nabla u$ & \texttt{WorldVecFct\_FOT\footnotemark[1]}($\vec{v}\in${\scriptsize WorldVector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $F:\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
$F(\{v_i\}_i, \{\nabla w_j\}_j, \vec{x}) \cdot \nabla u$ & \texttt{General\_FOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$,\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $F:\mathbb{R}^n\times$\small{vector}$\langle\mathbb{R}\rangle\times$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}^n$) \\
\hline
%==========================================================
\multicolumn{2}{c}{\scriptsize Second-Order-Terms, sign in strong formulation: -}\\
\hline
$\Delta u$ & \texttt{Simple\_SOT}() \\
$c \cdot \Delta u$ & \texttt{Simple\_SOT}($c\in\mathbb{R}$) \\
$\nabla\cdot (f(\vec{x}) \nabla u)$ & \texttt{CoordsAtQP\_SOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$\nabla\cdot (f(v) \nabla u)$ & \texttt{VecAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$) \\
$\nabla\cdot (f(v, \vec{x}) \nabla u)$ & \texttt{VecAndCoordsAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$\nabla\cdot (f(v, w) \nabla u)$ & \texttt{Vec2AtQP\_SOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$) \\
$\nabla\cdot (f(\nabla v) \nabla u)$ & \texttt{FctGradient\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$\nabla\cdot (f(v, \nabla v) \nabla u)$ & \texttt{VecAndGradAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$\nabla\cdot (f(v, \nabla v, \vec{x}) \nabla u)$ & \texttt{VecGradCoordsAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$\nabla\cdot (f(v,\nabla w) \nabla u)$ & \texttt{VecGrad\_SOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
$\partial_i (c\,\partial_j(u))$ & \texttt{FactorIJ\_SOT}($i,j\in\mathbb{N}$, $c\in\mathbb{R}$) \\
$\partial_i (f(\vec{x})\,\partial_j(u))$ & \texttt{CoordsAtQP\_IJ\_SOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$, $i,j\in\mathbb{N}$) \\
$\partial_i (f(v)\,\partial_j(u))$ & \texttt{VecAtQP\_IJ\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$, $i,j\in\mathbb{N}$) \\
$\nabla \cdot (A \nabla u)$ & \texttt{Matrix\_SOT}($A\in\mathbb{R}^{n\times n}$) \\
$\nabla \cdot (A(v) \nabla u)$ & \texttt{MatrixFct\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}\rightarrow\mathbb{R}^{n\times n}$, $div:\mathbb{R}^{n\times n}\rightarrow\mathbb{R}^{n}$) \\
$\nabla \cdot (A\cdot f(v,w) \nabla u)$ & \texttt{MatrixVec2\_SOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$, $A\in\mathbb{R}^{n\times n}$) \\
$\nabla \cdot (A(v,w) \nabla u)$ & \texttt{MatrixVec2Fct\_SOT\footnotemark[1]}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}^{n\times n}$) \\
$\nabla \cdot (A(\nabla v) \nabla u)$ & \texttt{MatrixGradient\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}^n\rightarrow\mathbb{R}^{n\times n}$, $div:\mathbb{R}^{n\times n}\rightarrow\mathbb{R}^{n}$) \\
$\nabla \cdot (A(v, \nabla v) \nabla u)$ & \texttt{VecMatrixGradientAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}^{n\times n}$, $div:\mathbb{R}^{n\times n}\rightarrow\mathbb{R}^{n}$) \\
$\nabla \cdot (A(\nabla v, \vec{x}) \nabla u)$ & \texttt{MatrixGradientAndCoords\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}^{n\times n}$, $div:\mathbb{R}^{n\times n}\rightarrow\mathbb{R}^{n}$) \\
$\nabla \cdot (A(\{v_i\}_i, \{\nabla w_j\}_j, \vec{x}) \nabla u)$ & \texttt{General\_SOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$,\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $ A:\mathbb{R}^n\times$\small{vector}$\langle\mathbb{R}\rangle\times$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}^{n\times n}$, $div:\mathbb{R}^{n\times n}\rightarrow\mathbb{R}^{n}$) \\
\end{longtable}
\end{document}
File added
\documentclass[10pt,a4paper]{article}
\usepackage[a4paper,top=1.5cm,bottom=1.5cm]{geometry}
\usepackage{fancyhdr}
% \usepackage[utf8x]{inputenc}
% \usepackage{ucs}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{array}
\usepackage{longtable}
\pagestyle{fancy}
\fancyhf{}
\parindent0cm
\parskip1ex plus.3ex minus.3ex
\fancyhead[R]{\today}
\renewcommand{\headrulewidth}{0pt}
\begin{document}\small
\setlength{\LTleft}{-2.5cm}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\section*{Operator terms}
\begin{longtable}{>{\begin{math}}p{0.275\textwidth}<{\end{math}}|p{1\textwidth}}
\hline
\multicolumn{2}{c}{\scriptsize Zero-Order-Terms}\\
\hline
\langle c\;\phi,\psi\rangle & \texttt{Simple\_ZOT}($c\in\mathbb{R}$) \\
\langle f(\vec{x})\;\phi,\psi\rangle & \texttt{CoordsAtQP\_ZOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v)\;\phi,\psi\rangle & \texttt{VecAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$) \\
\langle f(v, \vec{x})\; \phi,\psi\rangle & \texttt{VecAndCoordsAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v)\;g(w)\;\phi,\psi\rangle & \texttt{MultVecAtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$, $g:\mathbb{R}\rightarrow\mathbb{R}$) \\
\langle f(v, w)\;\phi,\psi\rangle & \texttt{Vec2AtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$) \\
\langle f(v_1, v_2, v_3)\;\phi,\psi\rangle & \texttt{Vec3AtQP\_ZOT}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$) \\
\langle f(\nabla v)\;\phi,\psi\rangle & \texttt{FctGradient\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(\nabla v, \vec{x})\;\phi,\psi\rangle & \texttt{FctGradientCoords\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v, \nabla v)\;\phi,\psi\rangle & \texttt{VecAndGradAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v, \nabla v, \vec{x})\;\phi,\psi\rangle & \texttt{VecGradCoordsAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v, \nabla v, w)\;\phi,\psi\rangle & \texttt{Vec2AndGradAtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}\rightarrow\mathbb{R}$) \\
\langle f(v, \nabla w)\;\phi,\psi\rangle & \texttt{VecAndGradVecAtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v_1, v_2 \nabla v_3)\;\phi,\psi\rangle & \texttt{Vec2AndGradVecAtQP\_ZOT}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v, \nabla w_1, \nabla w_2)\;\phi,\psi\rangle & \texttt{VecAndGradVec2AtQP\_ZOT}($v,w_1,w_2\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v,w, \nabla v, \nabla w)\;\phi,\psi\rangle & \texttt{Vec2AndGrad2AtQP\_ZOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(\{v_i\}_i)\;\phi,\psi\rangle & \texttt{VecOfDOFVecsAtQP\_ZOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle \rangle$, $f:$\small{vector}$\langle\mathbb{R}\rangle\rightarrow\mathbb{R}$) \\
\langle f(\{\nabla v_i\}_i)\;\phi,\psi\rangle & \texttt{VecOfGradientsAtQP\_ZOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $f:$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}$) \\
\langle f(v, \{\nabla w_i\}_i)\;\phi,\psi\rangle & \texttt{VecAndVecOfGradientsAtQP\_ZOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$,\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $f:\mathbb{R}\times$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}$) \\
\langle \partial_1 v_1\,[+\partial_2 v_2 + \partial_3 v_3]\;\phi,\psi\rangle & \texttt{VecDivergence\_ZOT}($v_1\,[,v_2,v_3]\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$) \\
\langle f(\{v_i\}_i, \{\nabla w_j\}_j, \vec{x})\;\phi,\psi\rangle & \texttt{General\_ZOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$,\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $f:\mathbb{R}^n\times$\small{vector}$\langle\mathbb{R}\rangle\times$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}$) \\
\hline
\end{longtable}
\begin{longtable}{>{\begin{math}}p{0.275\textwidth}<{\end{math}}|>{\begin{math}}p{0.275\textwidth}<{\end{math}}|p{.7\textwidth}}
\hline
%==============================================
\multicolumn{3}{c}{\scriptsize First-Order-Terms}\\
\hline
\text{\scriptsize GRD\_PHI} & \text{\scriptsize GRD\_PSI} & \\
\hline
\langle \vec{1} \cdot \nabla \phi,\psi\rangle & \langle \vec{1} \phi,\nabla \psi\rangle & \texttt{Simple\_FOT}() \\
\langle c\,\vec{1} \cdot \nabla \phi,\psi\rangle & \langle c\,\vec{1} \phi,\nabla \psi\rangle & \texttt{FactorSimple\_FOT}($c\in\mathbb{R}$) \\
\langle \vec{b} \cdot \nabla \phi,\psi\rangle & \langle \vec{b} \phi,\nabla \psi\rangle & \texttt{Vector\_FOT}($b\in\mathbb{R}^n$) \\
\langle v\cdot w\cdot\vec{b}\cdot\nabla \phi,\psi\rangle & \langle v\cdot w\cdot\vec{b} \phi,\nabla \psi\rangle & \texttt{Vec2AtQP\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $b\in\mathbb{R}^n$) \\
\langle f(v)\,\vec{b} \cdot \nabla \phi,\psi\rangle & \langle f(v)\cdot \vec{b} \phi,\nabla \psi\rangle &\texttt{VecAtQP\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
\langle f(\vec{x})\,\vec{1} \cdot \nabla \phi,\psi\rangle & \langle f(\vec{x})\cdot \vec{1} \phi,\nabla \psi\rangle &\texttt{CoordsAtQP\_FOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(\vec{x})\,\vec{b} \cdot \nabla \phi,\psi\rangle & \langle f(\vec{x})\cdot \vec{b} \phi,\nabla \psi\rangle &\texttt{VecCoordsAtQP\_FOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
\langle f(\vec{x})\cdot v\cdot\vec{b}\cdot\nabla \phi,\psi\rangle & \langle f(\vec{x})\cdot v\cdot\vec{b} \phi,\nabla \psi\rangle &\texttt{FctVecAtQP\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$,$f:\mathbb{R}^n\rightarrow\mathbb{R}$,$b\in\mathbb{R}^n$) \\
\langle v_1\cdot f(v_2,v_3)\,\vec{b} \cdot \nabla \phi,\psi\rangle & \langle v_1\cdot f(v_2,v_3)\cdot\vec{b} \phi,\nabla \psi\rangle &\texttt{Vec3FctAtQP\_FOT}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
\langle f(v,w,\nabla v)\,\vec{b} \cdot \nabla \phi,\psi\rangle & \langle f(v,w,\nabla v)\cdot\vec{b} \phi,\nabla \psi\rangle &\texttt{Vec2AndGradAtQP\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$, $b\in\mathbb{R}^n$) \\
\langle F(v) \cdot \nabla \phi,\psi\rangle & \langle F(v)\,\phi, \nabla \psi\rangle &\texttt{VectorFct\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}\rightarrow\mathbb{R}^n$) \\
\langle F(\nabla v) \cdot \nabla \phi,\psi\rangle & \langle F(\nabla v)\,\phi, \nabla \psi\rangle &\texttt{VectorGradient\_FOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
\langle F(\vec{x}) \cdot \nabla \phi,\psi\rangle & \langle F(\vec{x}) \, \phi,\nabla \psi\rangle &\texttt{VecFctAtQP\_FOT}($F:\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
\langle F(v, \nabla w) \cdot \nabla \phi,\psi\rangle & \langle F(v, \nabla w) \, \phi,\nabla \psi\rangle &\texttt{VecGrad\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
\langle F(\nabla v, \nabla w) \cdot \nabla \phi,\psi\rangle & \langle F(\nabla v, \nabla w) \, \phi,\nabla \psi\rangle &\texttt{FctGrad2\_FOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
%\langle F(v_1, v_2,\nabla v_3) \cdot \nabla \phi,\psi\rangle & \langle F(v_1, v_2,\nabla v_3) \, \phi,\nabla \psi\rangle &\texttt{Vec2Grad\_FOT\footnote[1]{* available on request}}($v_1,v_2,v_3\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $F:\mathbb{R}\times\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
%\langle F(\vec{v}) \cdot \nabla \phi,\psi\rangle & \langle F(\vec{v}) \, \phi,\nabla \psi\rangle &\texttt{WorldVecFct\_FOT\footnotemark[1]}($\vec{v}\in${\scriptsize WorldVector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $F:\mathbb{R}^n\rightarrow\mathbb{R}^n$) \\
\langle F(\{v_i\}_i, \{\nabla w_j\}_j, \vec{x}) \cdot \nabla \phi,\psi\rangle & \langle F(\{v_i\}_i, \{\nabla w_j\}_j, \vec{x}) \, \phi,\nabla \psi\rangle &\texttt{General\_FOT}(\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$,\small{vector}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, \\ & & $F:\mathbb{R}^n\times$\small{vector}$\langle\mathbb{R}\rangle\times$\small{vector}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}^n$) \\
\hline
\end{longtable}
\newpage
\begin{longtable}{>{\begin{math}}p{0.275\textwidth}<{\end{math}}|p{\textwidth}}
\hline
%==========================================================
\multicolumn{2}{c}{\scriptsize Second-Order-Terms}\\
\hline
\langle c \cdot \nabla \phi, \nabla \psi\rangle & \texttt{Simple\_SOT}($[c\in\mathbb{R}]$) \\
\langle f(\vec{x}) \nabla \phi,\nabla \psi\rangle & \texttt{CoordsAtQP\_SOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v) \nabla \phi,\nabla \psi\rangle & \texttt{VecAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $[f:\mathbb{R}\rightarrow\mathbb{R}]$) \\
\langle f(v, \vec{x}) \nabla \phi,\nabla \psi\rangle & \texttt{VecAndCoordsAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v, w) \nabla \phi,\nabla \psi\rangle & \texttt{Vec2AtQP\_SOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $[f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}]$) \\
\langle f(\nabla v) \nabla \phi,\nabla \psi\rangle & \texttt{FctGradient\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v, \nabla v) \nabla \phi,\nabla \psi\rangle & \texttt{VecAndGradAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v, \nabla v, \vec{x}) \nabla \phi,\nabla \psi\rangle & \texttt{VecGradCoordsAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle f(v,\nabla w) \nabla \phi,\nabla \psi\rangle & \texttt{VecGrad\_SOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}$) \\
\langle c\,\partial_j(\phi),\partial_i(\psi)\rangle & \texttt{FactorIJ\_SOT}($i,j\in\mathbb{N}$, $c\in\mathbb{R}$) \\
\langle f(\vec{x})\,\partial_j(\phi),\partial_i(\psi)\rangle & \texttt{CoordsAtQP\_IJ\_SOT}($f:\mathbb{R}^n\rightarrow\mathbb{R}$, $i,j\in\mathbb{N}$) \\
\langle f(v)\,\partial_j(\phi),\partial_i(\psi)\rangle & \texttt{VecAtQP\_IJ\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\rightarrow\mathbb{R}$, $i,j\in\mathbb{N}$) \\
\langle f(v_1,v_2)\,\partial_j(\phi),\partial_i(\psi)\rangle & \texttt{Vec2AtQP\_IJ\_SOT}($v_1,v_2\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$, $i,j\in\mathbb{N}$) \\
\langle B \nabla \phi,\nabla \psi\rangle & \texttt{Matrix\_SOT}($B\in\mathbb{R}^{n\times n}$) \\
\langle A(v) \nabla \phi,\nabla \psi\rangle & \texttt{MatrixFct\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}\rightarrow\mathbb{R}^{n\times n}$, $[div^*]$) \\
\langle B\cdot f(v,w) \nabla \phi,\nabla \psi\rangle & \texttt{MatrixVec2\_SOT}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $f:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}$, $B\in\mathbb{R}^{n\times n}$) \\
%\langle A(v,w) \nabla \phi,\nabla \psi\rangle & \texttt{MatrixVec2Fct\_SOT\footnotemark[1]}($v,w\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}^{n\times n}$) \\
\langle A(\nabla v) \nabla \phi,\nabla \psi\rangle & \texttt{MatrixGradient\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}^n\rightarrow\mathbb{R}^{n\times n}$, $[div^*]$) \\
\langle A(v, \nabla v) \nabla \phi,\nabla \psi\rangle & \texttt{VecMatrixGradientAtQP\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}\times\mathbb{R}^n\rightarrow\mathbb{R}^{n\times n}$, $[div^*]$) \\
\langle A(\nabla v, \vec{x}) \nabla \phi,\nabla \psi\rangle & \texttt{MatrixGradientAndCoords\_SOT}($v\in${\scriptsize DOFVector}$\langle\mathbb{R}\rangle$, $A:\mathbb{R}^n\times\mathbb{R}^n\rightarrow\mathbb{R}^{n\times n}$, $[div^*]$) \\
\langle A(\vec{x}, \{v_i\}_i, \{\nabla w_j\}_j) \nabla \phi,\nabla \psi\rangle & \texttt{General\_SOT}(\small{vec}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$,\small{vec}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $ A:\mathbb{R}^n\times$\small{vec}$\langle\mathbb{R}\rangle\times$\small{vec}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}^{n\times n}$, $[div^*]$) \\
\langle A(\vec{x}, \vec{n}, \{v_i\}_i, \{\nabla w_j\}_j) \nabla \phi,\nabla \psi\rangle & \texttt{GeneralParametric\_SOT}(\small{vec}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$,\small{vec}$\langle${\scriptsize DOFVector}$\langle\mathbb{R}\rangle\rangle$, $ A:\mathbb{R}^n\times\mathbb{R}^n\times$\small{vec}$\langle\mathbb{R}\rangle\times$\small{vec}$\langle\mathbb{R}^n\rangle\rightarrow\mathbb{R}^{n\times n}$, $[div^*]$) \\
\hline
\end{longtable}
\section*{Comments}
\begin{itemize}
\item All operators are listed in the files \texttt{ZeroOrderTerm.h}, \texttt{FirstOrderTerm.h} and \texttt{SecondOrderTerm.h}.
\item The following definitions/shortcuts are used to reduce typing:
$L_2$-Scalar product: $\langle\cdot,\cdot\rangle$, trialfunction: $\phi$, testfunction $\psi$, coefficients $c\in\mathbb{R},\;\vec{1},\vec{b},\vec{x}\in\mathbb{R}^n,$ with $(\vec{1})_i = 1$, $B\in\mathbb{R}^{n\times n}$, functors $f:(\ldots)\rightarrow\mathbb{R}$, $F:(\ldots)\rightarrow\mathbb{R}^n$ and $A:(\ldots)\rightarrow\mathbb{R}^{n\times n}$.
\item Some mathematical notations are used to describe data-structures: $\mathbb{R}$ means \texttt{double}, $\mathbb{R}^n$ means \texttt{WorldVector<double>} and $\mathbb{R}^{n\times n}$ means \texttt{WorldMatrix<double>}.
\item $f, F, A$ can be implemented as \texttt{(*)AbstractFunction$\langle$ReturnType, InputType1, InputType2, ...$\rangle$}, where \texttt{(*)}$\in$\{$\emptyset$, \texttt{Binary}, \texttt{Tertiary}, \texttt{Quart}\} depending on the number of input arguments.
\item The data-structure \texttt{DOFVector<*>} is always a pointer to a DOFVector.
\item Optional arguments are depicted in square brackets $[*]$, where constants $c = 1$ by default, functions are \texttt{NULL}-pointers by default and are treated as identity functors or simple multiplication functors.
\item The argument $div:=\mathbb{R}^{n\times n}\rightarrow\mathbb{R}^n$ is only interesting for error estimators and optional. Is should implement the divergence of the matrix function in the operator.
\item The argument \small{vec}$\langle*\rangle$ should be implemented as \texttt{std::vector$\langle*\rangle$}.
\item In the last Second-Order-Operator \texttt{GeneralParametric\_SOT}, the second argument $\vec{n}$ to $A$ is the elementnormal, especially for surface meshes.
\end{itemize}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment