Newer
Older
#include "config.h"
#include <iostream>
#if !HAVE_DUNE_FOAMGRID
#error "Need dune-foamgrid for the definition of the convergence test"
#endif
#if !HAVE_DUNE_LOCALFUNCTIONS
#error "Need dune-localfunctions for the definition of the convergence test"
#endif
#include <dune/common/parallel/mpihelper.hh> // An initializer of MPI
#include <dune/common/test/testsuite.hh>
#include <dune/curvedgrid/curvedgrid.hh>
#include <dune/foamgrid/foamgrid.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/grid/io/file/gmshreader.hh>
#include <dune/localfunctions/lagrange/pk.hh>
#if WRITE_FILES
#include <dune/vtk/vtkwriter.hh>
#include <dune/vtk/datacollectors/lagrangedatacollector.hh>
#endif
// 1 .. Sphere
// 2 .. Ellipsoid
// 3 .. Torus
#ifndef GEOMETRY_TYPE
#define GEOMETRY_TYPE 1
#endif
#if GEOMETRY_TYPE == 1
#include <dune/curvedgrid/geometries/sphere.hh>
#include <dune/curvedgrid/geometries/ellipsoid.hh>
#include <dune/curvedgrid/geometries/torus.hh>
#elif GEOMETRY_TYPE == 4
#include <dune/curvedgrid/geometries/cylinder.hh>
#error "Unknown GEOMETRY_TYPE. Must bei either 1, 2, 3, or 4"
#endif
// polynomial order of geometry
#ifndef GEOMETRY_ORDER
#define GEOMETRY_ORDER 3
#endif
#include "convergence.hh"
const int order = GEOMETRY_ORDER;
const int quad_order = order+6;
const int num_levels = 5;
int main (int argc, char** argv)
{
using namespace Dune;
MPIHelper::instance(argc, argv);
using HostGrid = FoamGrid<2,3>;
#if GEOMETRY_TYPE == 1
std::unique_ptr<HostGrid> hostGrid = GmshReader<HostGrid>::read( DUNE_GRID_PATH "sphere.msh");
auto gridFct = sphereGridFunction<HostGrid>(1.0);
#elif GEOMETRY_TYPE == 2
std::unique_ptr<HostGrid> hostGrid = GmshReader<HostGrid>::read( DUNE_GRID_PATH "ellipsoid3.msh");
auto gridFct = ellipsoidGridFunction<HostGrid>(1.0, 0.75, 1.25);
#elif GEOMETRY_TYPE == 3
std::unique_ptr<HostGrid> hostGrid = GmshReader<HostGrid>::read( DUNE_GRID_PATH "torus2.msh");
auto gridFct = torusGridFunction<HostGrid>(2.0, 1.0);
#elif GEOMETRY_TYPE == 4
std::unique_ptr<HostGrid> hostGrid = GmshReader<HostGrid>::read( DUNE_GRID_PATH "cylinder.msh");
auto gridFct = cylinderGridFunction<HostGrid>(1.0);
CurvedGrid grid(*hostGrid, gridFct, order);
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
using Grid = decltype(grid);
std::vector<typename Grid::ctype> inf_errors, L2_errors, normal_errors, curvature_errors, edge_lengths;
for (int i = 0; i < num_levels; ++i) {
if (i > 0)
grid.globalRefine(1);
#if WRITE_FILES
using DC = LagrangeDataCollector<typename Grid::LeafGridView, order>;
VtkUnstructuredGridWriter<typename Grid::LeafGridView, DC> writer(grid.leafGridView());
writer.write("level_" + std::to_string(i) + ".vtu");
#endif
std::cout << "level = " << i << std::endl;
inf_errors.push_back( inf_error(grid, gridFct.f(), quad_order) );
L2_errors.push_back( L2_error(grid, gridFct.f(), quad_order) );
normal_errors.push_back( normal_error(grid, gridFct.f(), quad_order) );
curvature_errors.push_back( curvature_error(grid, gridFct.f(), quad_order) );
edge_lengths.push_back( edge_length(grid) );
}
using std::log;
using std::abs;
// calculate the experimental order of convergence
std::vector<typename Grid::ctype> eocInf(num_levels, 0), eocL2(num_levels, 0), eocNormal(num_levels, 0), eocCurvature(num_levels, 0);
for (int i = 1; i < num_levels; ++i) {
eocInf[i] = log(inf_errors[i]/inf_errors[i-1]) / log(edge_lengths[i]/edge_lengths[i-1]);
eocL2[i] = log(L2_errors[i]/L2_errors[i-1]) / log(edge_lengths[i]/edge_lengths[i-1]);
eocNormal[i] = log(normal_errors[i]/normal_errors[i-1]) / log(edge_lengths[i]/edge_lengths[i-1]);
eocCurvature[i] = log(curvature_errors[i]/curvature_errors[i-1]) / log(edge_lengths[i]/edge_lengths[i-1]);
}
TestSuite test;
test.check(abs(eocInf.back() - (order+1)) < 0.5, "|d|_L^inf != order+1");
test.check(abs(eocL2.back() - (order+1)) < 0.5, "|d|_L^2 != order+1");
test.check(abs(eocNormal.back() - (order+0)) < 0.5, "|n - nh|_L^2 != order");
test.check(abs(eocCurvature.back() - (order-1)) < 0.5, "|H - Hh|_L^2 != order-1");
auto print_line = [](auto i, const auto& data, auto accept) {
std::cout << i;
for (const auto& d : data) {
std::cout << '\t' << "| ";
if (accept(d))
std::cout << d;
else
std::cout << '\t';
}
std::cout << std::endl;
};
auto print_break = [] {
std::cout.width(8 + 9*16);
std::cout.fill('-');
std::cout << '-' << std::endl;
std::cout.fill(' ');
};
std::cout.setf(std::ios::scientific);
print_line("level", std::vector<std::string>{"h ","err_inf", "eoc_inf", "err_L2", "eoc_L2", "err_norm", "eoc_norm", "err_curv", "eoc_curv"},
[](auto&&) { return true; });
print_break();
for (int i = 0; i < num_levels; ++i)
print_line(i, std::vector<typename Grid::ctype>{edge_lengths[i], inf_errors[i], eocInf[i], L2_errors[i], eocL2[i], normal_errors[i], eocNormal[i], curvature_errors[i], eocCurvature[i]},
[](auto&&) { return true; });
return test.exit();
}