Newer
Older
#ifndef DUNE_CURVEDGRID_ANALYTIC_DISCRETEFUNCTION_HH
#define DUNE_CURVEDGRID_ANALYTIC_DISCRETEFUNCTION_HH
#include <optional>
#include <type_traits>
#include <utility>
#if !HAVE_DUNE_LOCALFUNCTIONS
#error "Need dune-localfunctions for the definition of the AnalyticDiscreteFunction"
#endif
#include <dune/common/typeutilities.hh>
#include <dune/curvedgrid/gridfunctions/discretegridviewfunction.hh>
#include <dune/curvedgrid/gridfunctions/gridentityset.hh>
#include <dune/localfunctions/lagrange/lfecache.hh>
namespace Dune {
/// \brief LocalFunction associated to the \ref AnalyticDiscreteFunction
/**
* \tparam LocalContext Context this localFunction can be bound to, e.g. a grid element
* \tparam F Type of a function that can be evaluated in global coordinates.
* \tparam derivativeOrder Order of the derivative of the functor to return on evaluation
**/
template <class LocalContext, class F, int derivativeOrder = 0>
class LocalAnalyticDiscreteFunction;
/// \brief Generator for \ref LocalAnalyticDiscreteFunction
/**
* \param ff Function that can be evaluated at global coordinates of the \ref LocalContext
* \param order Polynomial order of the approximation of ff
* \tparam LocalContext Context this localFunction can be bound to, e.g. a grid element
**/
template <class LocalContext, class FF>
auto localAnalyticDiscreteFunction (FF&& ff, int order)
{
using F = std::decay_t<FF>;
return LocalAnalyticDiscreteFunction<LocalContext, F>{std::forward<FF>(ff), order};
}
template <class LC, class Functor, int derivativeOrder>
class LocalAnalyticDiscreteFunction
public:
using LocalContext = LC;
using Geometry = typename LocalContext::Geometry;
using ctype = typename Geometry::ctype;
using Domain = typename Geometry::GlobalCoordinate;
using RangeType = std::invoke_result_t<Functor,Domain>;
template <int degree>
using DerivativeRange = typename Impl::DerivativeRangeType<RangeType(Domain), degree, Functions::DefaultDerivativeTraits>::type;
using LocalDomain = typename Geometry::LocalCoordinate;
using Range = DerivativeRange<derivativeOrder>;
using Signature = Range(LocalDomain);
public:
/// \brief Constructor. Stores the functor f by value
template <class FF>
LocalAnalyticDiscreteFunction (FF&& ff, int order)
: f_(std::forward<FF>(ff))
, order_(order)
, cache_(order)
{}
/// \brief bind the LocalFunction to the local context
* Stores the localContext and its geometry in a cache variable
void bind (const LocalContext& localContext)
{
localContext_.emplace(localContext);
geometry_.emplace(localContext_->geometry());
lfe_ = &cache_.get(localContext_->type());
lfe_->localInterpolation().interpolate([&](const auto& local)
{
return f_(geometry_->global(local));
}, coefficients_);
}
/// \brief unbind the localContext from the localFunction
lfe_ = nullptr;
geometry_.reset();
localContext_.reset();
/// \brief evaluate the stored function in local coordinates
/**
* Transform the local coordinates to global coordinates first,
* then evalute the stored functor.
**/
Range operator() (const LocalDomain& local) const
static_assert(derivativeOrder < 2, "Higher-order derivatives not implemented");
if constexpr (derivativeOrder == 0)
return evaluateFunction(local);
else if constexpr (derivativeOrder == 1)
return evaluateJacobian(local);
}
friend LocalAnalyticDiscreteFunction<LC,Functor,derivativeOrder+1> derivative (const LocalAnalyticDiscreteFunction& lf)
{
return {lf.f_, lf.order_};
}
/// \brief return the bound localContext.
const LocalContext& localContext () const
{
assert(!!localContext_);
return *localContext_;
}
/// \brief obtain the functor
const Functor& f () const
{
return f_;
}
private:
DerivativeRange<0> evaluateFunction (const LocalDomain& local) const
{
assert(!!lfe_);
const auto& localBasis = lfe_->localBasis();
localBasis.evaluateFunction(local, shapeValues_);
assert(coefficients_.size() == shapeValues_.size());
DerivativeRange<0> nh(0);
for (std::size_t i = 0; i < shapeValues_.size(); ++i)
nh.axpy(shapeValues_[i], coefficients_[i]);
DerivativeRange<1> evaluateJacobian (const LocalDomain& local) const
{
assert(!!geometry_);
assert(!!lfe_);
const auto& localBasis = lfe_->localBasis();
// evaluate basis functions in local coordinate
localBasis.evaluateJacobian(local, shapeGradients_);
assert(coefficients_.size() == shapeGradients_.size());
// transform gradients to global coordinates
auto jit = geometry_->jacobianInverseTransposed(local);
gradients_.resize(shapeGradients_.size());
for (std::size_t i = 0; i < shapeGradients_.size(); ++i)
jit.mv(shapeGradients_[i][0], gradients_[i]);
DerivativeRange<1> J(0);
for (std::size_t i = 0; i < coefficients_.size(); ++i)
for (std::size_t j = 0; j < J.N(); ++j)
J[j].axpy(coefficients_[i][j], gradients_[i]);
private:
Functor f_;
int order_;
using LFECache = LagrangeLFECache<ctype,ctype,Geometry::mydimension>;
LFECache cache_;
using LFE = typename LFECache::FiniteElementType;
LFE const* lfe_ = nullptr;
std::vector<RangeType> coefficients_;
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
using LB = typename LFE::Traits::LocalBasisType;
mutable std::vector<typename LB::Traits::RangeType> shapeValues_;
mutable std::vector<typename LB::Traits::JacobianType> shapeGradients_;
mutable std::vector<FieldVector<ctype,Geometry::coorddimension>> gradients_;
// some caches
std::optional<LocalContext> localContext_;
std::optional<Geometry> geometry_;
};
/// \brief GridFunction associated to the mapping F
/**
* \tparam Grid The grid type with elements the corresponding LocalFunction can be bound to
* \tparam F Type of a function that can be evaluated in global coordinates.
* \tparam ORDER Polynomial order of the local lagrange basis functions (optional)
**/
template <class Grid, class F, int ORDER = -1>
class AnalyticDiscreteFunction;
/// \brief Generator for \ref AnalyticDiscreteFunction
/**
* \param ff Function that can be evaluated at global coordinates of the \ref Grid
* \tparam Grid The grid type with elements the corresponding LocalFunction can be bound to
**/
template <class FF, class Grid>
auto analyticDiscreteFunction (FF&& ff, const Grid& /*grid*/, int order)
{
using F = std::decay_t<FF>;
return AnalyticDiscreteFunction<Grid, F>{std::forward<FF>(ff), order};
}
template <int ORDER, class FF, class Grid>
auto analyticDiscreteFunction (FF&& ff, const Grid& /*grid*/)
{
using F = std::decay_t<FF>;
return AnalyticDiscreteFunction<Grid, F, ORDER>{std::forward<FF>(ff)};
}
template <class GridType, class Functor, int ORDER>
class AnalyticDiscreteFunction
{
public:
using Grid = GridType;
using EntitySet = GridEntitySet<Grid,0>;
using Domain = typename EntitySet::GlobalCoordinate;
using Range = std::invoke_result_t<Functor,Domain>;
using Signature = Range(Domain);
public:
/// \brief Constructor. Stores the functor f by value
template <class FF,
disableCopyMove<AnalyticDiscreteFunction, FF> = 0>
AnalyticDiscreteFunction (FF&& ff, int order = ORDER)
: f_(std::forward<FF>(ff))
, order_(order)
{}
/// \brief evaluate the stored function in global coordinates
Range operator() (const Domain& x) const
/// \brief construct the \ref LocalAnalyticDiscreteFunction
using LocalFunction = LocalAnalyticDiscreteFunction<typename EntitySet::Element, Functor>;
friend LocalFunction localFunction (const AnalyticDiscreteFunction& t)
return LocalFunction(t.f_, t.order_);
/// \brief obtain the stored \ref GridEntitySet
const EntitySet& entitySet () const
/// \brief obtain the functor
const Functor& f () const
{
return f_;
}
/// \brief obtain the order
const int order () const
{
return order_;
}
private:
Functor f_;
int order_;
EntitySet entitySet_;
};
#endif // DUNE_CURVEDGRID_ANALYTIC_DISCRETEFUNCTION_HH