-
Jonathan BAUDIN authoredJonathan BAUDIN authored
SERCOM.cpp 11.83 KiB
#include "SERCOM.h"
// Constants for Clock multiplexers
#define GENERIC_CLOCK_SERCOM0 (0x14ul)
#define GENERIC_CLOCK_SERCOM1 (0x15ul)
#define GENERIC_CLOCK_SERCOM2 (0x16ul)
#define GENERIC_CLOCK_SERCOM3 (0x17ul)
#define GENERIC_CLOCK_SERCOM4 (0x18ul)
#define GENERIC_CLOCK_SERCOM5 (0x19ul)
SERCOM::SERCOM(Sercom* s)
{
sercom = s;
}
/* =========================
* ===== Sercom UART
* =========================
*/
void SERCOM::initUART(SercomUartMode mode, SercomUartSampleRate sampleRate, uint32_t baudrate)
{
resetUART();
initClockNVIC();
//Setting the CTRLA register
sercom->USART.CTRLA.reg = SERCOM_USART_CTRLA_MODE(mode) |
SERCOM_USART_CTRLA_SAMPR(sampleRate);
//Setting the Interrupt register
sercom->USART.INTENSET.reg = SERCOM_USART_INTENSET_RXC | //Received complete
SERCOM_USART_INTENSET_ERROR; //All others errors
if(mode == UART_INT_CLOCK)
{
uint16_t sampleRateValue;
if(sampleRate == SAMPLE_RATE_x16)
sampleRateValue = 16;
else if(sampleRate == SAMPLE_RATE_x8)
sampleRateValue = 8;
else
sampleRateValue = 3;
//Asynchronous arithmetic mode
//65535 * ( 1 - sampleRateValue * baudrate / SERCOM_FREQ_REF);
sercom->USART.BAUD.reg = 65535.0 * ( 1.0 - (float)(sampleRateValue) * (float)(baudrate) / (float)(SERCOM_FREQ_REF));
}
}
void SERCOM::initFrame(SercomUartCharSize charSize, SercomDataOrder dataOrder, SercomParityMode parityMode, SercomNumberStopBit nbStopBits)
{
//Setting the CTRLA register
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_FORM( (parityMode == SERCOM_NO_PARITY ? 0 : 1) ) |
dataOrder << SERCOM_USART_CTRLA_DORD_Pos;
//Setting the CTRLB register
sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_CHSIZE(charSize) |
nbStopBits << SERCOM_USART_CTRLB_SBMODE_Pos |
(parityMode == SERCOM_NO_PARITY ? 0 : parityMode) << SERCOM_USART_CTRLB_PMODE_Pos; //If no parity use default value
}
void SERCOM::initPads(SercomUartTXPad txPad, SercomRXPad rxPad)
{
//Setting the CTRLA register
sercom->USART.CTRLA.reg |= SERCOM_USART_CTRLA_TXPO(txPad) |
SERCOM_USART_CTRLA_RXPO(rxPad);
//Setting the CTRLB register (Enabling Transceiver and Receiver)
sercom->USART.CTRLB.reg |= SERCOM_USART_CTRLB_TXEN |
SERCOM_USART_CTRLB_RXEN;
}
void SERCOM::resetUART()
{
//Setting the Software bit to 1
sercom->USART.CTRLA.bit.SWRST = 0x1u;
//Wait for both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while(sercom->USART.CTRLA.bit.SWRST || sercom->USART.SYNCBUSY.bit.SWRST);
}
void SERCOM::enableUART()
{
//Setting the enable bit to 1
sercom->USART.CTRLA.bit.ENABLE = 0x1u;
//Wait for then enable bit from SYNCBUSY is equal to 0;
while(sercom->USART.SYNCBUSY.bit.ENABLE);
}
void SERCOM::flushUART()
{
// Wait for transmission to complete
while(sercom->USART.INTFLAG.bit.DRE != SERCOM_USART_INTFLAG_DRE);
}
void SERCOM::clearStatusUART()
{
//Reset (with 0) the STATUS register
sercom->USART.STATUS.reg = SERCOM_USART_STATUS_RESETVALUE;
}
bool SERCOM::availableDataUART()
{
//RXC : Receive Complete
return sercom->USART.INTFLAG.bit.RXC;
}
bool SERCOM::isBufferOverflowErrorUART()
{
//BUFOVF : Buffer Overflow
return sercom->USART.STATUS.bit.BUFOVF;
}
bool SERCOM::isFrameErrorUART()
{
//FERR : Frame Error
return sercom->USART.STATUS.bit.FERR;
}
bool SERCOM::isParityErrorUART()
{
//PERR : Parity Error
return sercom->USART.STATUS.bit.PERR;
}
bool SERCOM::isDataRegisterEmptyUART()
{
//DRE : Data Register Empty
return sercom->USART.INTFLAG.bit.DRE;
}
uint8_t SERCOM::readDataUART()
{
return sercom->USART.DATA.bit.DATA;
}
int SERCOM::writeDataUART(uint8_t data)
{
//Flush UART buffer
flushUART();
//Put data into DATA register
sercom->USART.DATA.reg = (uint16_t)data;
return 1;
}
/* =========================
* ===== Sercom SPI
* =========================
*/
void SERCOM::initSPI(SercomSpiTXPad mosi, SercomRXPad miso, SercomSpiCharSize charSize, SercomDataOrder dataOrder)
{
resetSPI();
initClockNVIC();
//Setting the CTRLA register
sercom->SPI.CTRLA.reg = SERCOM_SPI_CTRLA_MODE(SPI_MASTER_OPERATION) |
SERCOM_SPI_CTRLA_DOPO(mosi) |
SERCOM_SPI_CTRLA_DIPO(miso) |
dataOrder << SERCOM_SPI_CTRLA_DORD_Pos;
//Setting the CTRLB register
sercom->SPI.CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(charSize) |
(0x1ul) << SERCOM_SPI_CTRLB_RXEN_Pos; //Active the SPI receiver.
}
void SERCOM::initSPIClock(SercomSpiClockMode clockMode, uint32_t baudrate)
{
//Extract data from clockMode
int cpha, cpol;
if((clockMode & (0x1ul)) == 0 )
cpha = 0;
else
cpha = 1;
if((clockMode & (0x2ul)) == 0)
cpol = 0;
else
cpol = 1;
//Setting the CTRLA register
sercom->SPI.CTRLA.reg |= cpha << SERCOM_SPI_CTRLA_CPHA_Pos |
cpol << SERCOM_SPI_CTRLA_CPOL_Pos;
//Synchronous arithmetic
sercom->SPI.BAUD.reg = calculateBaudrateSynchronous(baudrate);
}
void SERCOM::resetSPI()
{
//Setting the Software Reset bit to 1
sercom->SPI.CTRLA.bit.SWRST = 0x1u;
//Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while(sercom->SPI.CTRLA.bit.SWRST || sercom->SPI.SYNCBUSY.bit.SWRST);
}
void SERCOM::enableSPI()
{
//Setting the enable bit to 1
sercom->SPI.CTRLA.bit.ENABLE = 0x1ul;
//Waiting then enable bit from SYNCBUSY is equal to 0;
while(sercom->SPI.SYNCBUSY.bit.ENABLE);
}
void SERCOM::disableSPI()
{
//Setting the enable bit to 0
sercom->SPI.CTRLA.bit.ENABLE = 0x0ul;
//Waiting then enable bit from SYNCBUSY is equal to 0;
while(sercom->SPI.SYNCBUSY.bit.ENABLE);
}
void SERCOM::setDataOrderSPI(SercomDataOrder dataOrder)
{
//Register enable-protected
disableSPI();
sercom->SPI.CTRLA.bit.DORD = dataOrder;
enableSPI();
}
void SERCOM::setBaudrateSPI(uint8_t divider)
{
//Can't divide by 0
if(divider == 0)
return;
//Register enable-protected
disableSPI();
sercom->SPI.BAUD.reg = calculateBaudrateSynchronous(SERCOM_FREQ_REF / divider);
enableSPI();
}
void SERCOM::setClockModeSPI(SercomSpiClockMode clockMode)
{
int cpha, cpol;
if((clockMode & (0x1ul)) == 0)
cpha = 0;
else
cpha = 1;
if((clockMode & (0x2ul)) == 0)
cpol = 0;
else
cpol = 1;
//Register enable-protected
disableSPI();
sercom->SPI.CTRLA.bit.CPOL = cpol;
sercom->SPI.CTRLA.bit.CPHA = cpha;
enableSPI();
}
void SERCOM::writeDataSPI(uint8_t data)
{
sercom->SPI.DATA.bit.DATA = data;
}
uint16_t SERCOM::readDataSPI()
{
return sercom->SPI.DATA.reg;
}
bool SERCOM::isBufferOverflowErrorSPI()
{
return sercom->SPI.STATUS.bit.BUFOVF;
}
bool SERCOM::isDataRegisterEmptySPI()
{
//DRE : Data Register Empty
return sercom->SPI.INTFLAG.bit.DRE;
}
bool SERCOM::isTransmitCompleteSPI()
{
//TXC : Transmit complete
return sercom->SPI.INTFLAG.bit.TXC;
}
bool SERCOM::isReceiveCompleteSPI()
{
//RXC : Receive complete
return sercom->SPI.INTFLAG.bit.RXC;
}
uint8_t SERCOM::calculateBaudrateSynchronous(uint32_t baudrate)
{
return SERCOM_FREQ_REF / (2 * baudrate) - 1;
}
/* =========================
* ===== Sercom WIRE
* =========================
*/
void SERCOM::resetWIRE()
{
//I2CM OR I2CS, no matter SWRST is the same bit.
//Setting the Software bit to 1
sercom->I2CM.CTRLA.bit.SWRST = 0x1ul;
//Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0
while(sercom->I2CM.CTRLA.bit.SWRST || sercom->I2CM.SYNCBUSY.bit.SWRST);
}
void SERCOM::enableWIRE()
{
//I2CM OR I2CS, no matter ENABLE is the same bit.
//Setting the enable bit to 1
sercom->I2CM.CTRLA.bit.ENABLE = 0x1ul;
//Waiting the enable bit from SYNCBUSY is equal to 0;
while(sercom->I2CM.SYNCBUSY.bit.ENABLE);
}
void SERCOM::initSlaveWIRE(uint8_t address)
{
resetWIRE();
//Setting slave mode
sercom->I2CS.CTRLA.bit.MODE = I2C_SLAVE_OPERATION;
//Enable Quick Command
sercom->I2CM.CTRLB.bit.QCEN = 0x1ul;
sercom->I2CS.ADDR.reg = SERCOM_I2CS_ADDR_ADDR(address & 0x7Ful) | // 0x7F, select only 7 bits
SERCOM_I2CS_ADDR_ADDRMASK(0x3FFul); // 0x3FF all bits set
//Setting the interrupt register
sercom->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_AMATCH | //Address Match
SERCOM_I2CS_INTENSET_DRDY; //Data Ready
//Waiting the SYSOP bit from SYNCBUSY is equal to 0;
while(sercom->I2CM.SYNCBUSY.bit.SYSOP);
}
void SERCOM::initMasterWIRE(uint32_t baudrate)
{
resetWIRE();
//Setting master mode and SCL Clock Stretch mode (stretch after ACK bit)
sercom->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_MODE(I2C_MASTER_OPERATION) |
SERCOM_I2CM_CTRLA_SCLSM;
//Enable Quick Command
sercom->I2CM.CTRLB.bit.QCEN = 0x1ul;
//Setting bus idle mode
sercom->I2CM.STATUS.bit.BUSSTATE = WIRE_IDLE_STATE;
//Setting all interrupts
sercom->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB |
SERCOM_I2CM_INTENSET_SB |
SERCOM_I2CM_INTENSET_ERROR;
//Synchronous
sercom->I2CM.BAUD.bit.BAUD = SERCOM_FREQ_REF / ( 2 * baudrate) - 1;
//Waiting the SYSOP bit from SYNCBUSY is equal to 0;
while(sercom->I2CM.SYNCBUSY.bit.SYSOP);
}
void SERCOM::prepareStopBitWIRE()
{
sercom->I2CM.CTRLB.bit.CMD = WIRE_MASTER_ACT_STOP;
}
void SERCOM::prepareAckBitWIRE()
{
sercom->I2CM.CTRLB.bit.CMD = WIRE_MASTER_ACT_READ;
}
bool SERCOM::startTransmissionWIRE(uint8_t address, SercomWireReadWriteFlag flag)
{
//7-bits address + 1-bits R/W
address = (address << 1) | flag;
//Wait idle bus mode
while(!isBusIdleWIRE());
//Send start and address
sercom->I2CM.ADDR.bit.ADDR = address;
//Address Transmitted
while(!sercom->I2CM.INTFLAG.bit.MB);
//ACK received (0: ACK, 1: NACK)
if(sercom->I2CM.STATUS.bit.RXNACK)
return false;
else
return true;
}
bool SERCOM::sendDataMasterWIRE(uint8_t data)
{
//Send data
sercom->I2CM.DATA.bit.DATA = data;
//Wait transmission successful
while(!sercom->I2CM.INTFLAG.bit.MB);
//Problems on line? nack received?
if(sercom->I2CM.STATUS.bit.RXNACK)
return false;
else
return true;
}
bool SERCOM::sendDataSlaveWIRE(uint8_t data)
{
//Send data
sercom->I2CS.DATA.bit.DATA = data;
//Wait data transmission successful
while(!sercom->I2CS.INTFLAG.bit.DRDY);
//Problems on line? nack received?
if(sercom->I2CS.STATUS.bit.RXNACK)
return false;
else
return true;
}
bool SERCOM::isMasterWIRE()
{
return sercom->I2CS.CTRLA.bit.MODE == I2C_MASTER_OPERATION;
}
bool SERCOM::isSlaveWIRE()
{
return sercom->I2CS.CTRLA.bit.MODE == I2C_SLAVE_OPERATION;
}
bool SERCOM::isBusIdleWIRE()
{
return sercom->I2CM.STATUS.bit.BUSSTATE == WIRE_IDLE_STATE;
}
bool SERCOM::isDataReadyWIRE()
{
return sercom->I2CS.INTFLAG.bit.DRDY;
}
bool SERCOM::isStopDetectedWIRE()
{
return sercom->I2CS.INTFLAG.bit.PREC;
}
bool SERCOM::isRestartDetectedWIRE()
{
return sercom->I2CS.STATUS.bit.SR;
}
bool SERCOM::isAddressMatch()
{
return sercom->I2CS.INTFLAG.bit.AMATCH;
}
bool SERCOM::isMasterReadOperationWIRE()
{
return sercom->I2CS.STATUS.bit.DIR;
}
int SERCOM::availableWIRE()
{
if(isMasterWIRE())
return sercom->I2CM.INTFLAG.bit.SB;
else
return sercom->I2CS.INTFLAG.bit.DRDY;
}
uint8_t SERCOM::readDataWIRE()
{
if(isMasterWIRE())
return sercom->I2CM.DATA.reg;
else
return sercom->I2CS.DATA.reg;
}
void SERCOM::initClockNVIC()
{
uint8_t clockId = 0;
IRQn_Type IdNvic;
if(sercom == SERCOM0)
{
clockId = GENERIC_CLOCK_SERCOM0;
IdNvic = SERCOM0_IRQn;
}
else if(sercom == SERCOM1)
{
clockId = GENERIC_CLOCK_SERCOM1;
IdNvic = SERCOM1_IRQn;
}
else if(sercom == SERCOM2)
{
clockId = GENERIC_CLOCK_SERCOM2;
IdNvic = SERCOM2_IRQn;
}
else if(sercom == SERCOM3)
{
clockId = GENERIC_CLOCK_SERCOM3;
IdNvic = SERCOM3_IRQn;
}
else if(sercom == SERCOM4)
{
clockId = GENERIC_CLOCK_SERCOM4;
IdNvic = SERCOM4_IRQn;
}
else if(sercom == SERCOM5)
{
clockId = GENERIC_CLOCK_SERCOM5;
IdNvic = SERCOM5_IRQn;
}
//Setting NVIC
NVIC_EnableIRQ(IdNvic);
NVIC_SetPriority (IdNvic, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority */
//Setting clock
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID( clockId ) | // Generic Clock 0 (SERCOMx)
GCLK_CLKCTRL_GEN_GCLK0 | // Generic Clock Generator 0 is source
GCLK_CLKCTRL_CLKEN ;
while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY )
{
/* Wait for synchronization */
}
}