@@ -221,7 +221,7 @@ The variations $ \innerH{\tangentR}{\deltafrac{\energyIA}{\Vb},\Wb} =: -\innerH{
&= \cIA\DivC\IdS
= \cIA\GradC 1
= \cIA\meanc\normal\formComma\\
\FbNV\label{eq:active_nematic_force}
\FbNA\label{eq:active_nematic_force}
&= \cNA\DivC\left( \IdS\Qb\IdS\right) \formPeriod
\end{align}
...
...
@@ -232,7 +232,7 @@ The variations $ \innerH{\tangentR}{\deltafrac{\energyIA}{\Vb},\Wb} =: -\innerH{
}
The active flux potential does not depend on any Q-tensor rate, which could serves as a process variable associated to $\Qb$.
As a consequence no active molecular forces $\HbAC\in\tangentQR$ occurs in the Q-tensor equation, \resp\ we stipulate $\Hb_{\IA}=\Hb_{\NV}=0$ in compliance with the setup in \cite{Nitschke2023}.
As a consequence no active molecular forces $\HbAC\in\tangentQR$ occurs in the Q-tensor equation, \resp\ we stipulate $\Hb_{\IA}=\Hb_{\NA}=\nullb$ in compliance with the setup in \cite{Nitschke2023}.
\subsubsection{Surface Conforming Q-Tensor}
...
...
@@ -246,12 +246,12 @@ and a tangential vector-valued surface non-conforming field $ \etab\in\tangentS
see \cite{NitschkeVoigt_2023}.
Substituting this decomposition into the active nematic force field \eqref{eq:active_nematic_force} yields