Newer
Older
#include <dune/common/bitfield.hh>
#include <dune/common/configparser.hh>
#include <dune/grid/onedgrid.hh>
#include <dune/istl/io.hh>
#include "../solver/iterativesolver.hh"
#include "../common/geomestimator.hh"
#include "../common/energynorm.hh"
#include "src/configuration.hh"
#include "src/quaternion.hh"
#include "src/rodassembler.hh"
#include "src/rodsolver.hh"
// Number of degrees of freedom:
// 7 (x, y, z, q_1, q_2, q_3, q_4) for a spatial rod
const int blocksize = 6;
using namespace Dune;
using std::string;
double computeEnergyNormSquared(const BlockVector<FieldVector<double,6> >& x,
const BCRSMatrix<FieldMatrix<double, 6, 6> >& matrix)
{
BlockVector<FieldVector<double, 6> > tmp(x.size());
tmp = 0;
matrix.umv(x,tmp);
return x*tmp;
}
int main (int argc, char *argv[]) try
{
// parse data file
ConfigParser parameterSet;
parameterSet.parseFile("rod3d.parset");
// read solver settings
const int numLevels = parameterSet.get("numLevels", int(1));
const int maxTrustRegionSteps = parameterSet.get("maxNewtonSteps", int(0));
const int multigridIterations = parameterSet.get("numIt", int(0));
const int nu1 = parameterSet.get("nu1", int(0));
const int nu2 = parameterSet.get("nu2", int(0));
const int mu = parameterSet.get("mu", int(0));
const int baseIterations = parameterSet.get("baseIt", int(0));
const double mgTolerance = parameterSet.get("tolerance", double(0));
const double baseTolerance = parameterSet.get("baseTolerance", double(0));
const double initialTrustRegionRadius = parameterSet.get("initialTrustRegionRadius", double(1));
const int numRodBaseElements = parameterSet.get("numRodBaseElements", int(0));
const bool instrumented = parameterSet.get("instrumented", int(0));
// ///////////////////////////////////////
// Create the grid
// ///////////////////////////////////////
GridType grid(numRodBaseElements, 0, 1);
SolutionType x(grid.size(grid.maxLevel(),1));
// //////////////////////////
// Initial solution
// //////////////////////////
for (int i=0; i<x.size(); i++) {
x[i].r[0] = 0; // x
x[i].r[1] = 0; // y
x[i].r[2] = double(i)/(x.size()-1); // z
//x[i].r[2] = i+5;
x[i].q = Quaternion<double>::identity();
//x[i].q = Quaternion<double>(zAxis, M_PI/2 * double(i)/(x.size()-1));
FieldVector<double,3> xAxis(0);
xAxis[0] = 1;
x[1].r[2] = 0.25;
x.back().r[2] = 0.5;
x[0].q = Quaternion<double>(xAxis, -M_PI/2);
x.back().q = Quaternion<double>(xAxis, M_PI/2);
#endif
std::cout << "Left boundary orientation:" << std::endl;
std::cout << "director 0: " << x[0].q.director(0) << std::endl;
std::cout << "director 1: " << x[0].q.director(1) << std::endl;
std::cout << "director 2: " << x[0].q.director(2) << std::endl;
std::cout << std::endl;
std::cout << "Right boundary orientation:" << std::endl;
std::cout << "director 0: " << x[x.size()-1].q.director(0) << std::endl;
std::cout << "director 1: " << x[x.size()-1].q.director(1) << std::endl;
std::cout << "director 2: " << x[x.size()-1].q.director(2) << std::endl;
// exit(0);
//x[0].r[2] = -1;
dirichletNodes.resize(numLevels);
for (int i=0; i<numLevels; i++) {
for (int j=0; j<blocksize; j++) {
dirichletNodes[i][j] = true;
dirichletNodes[i][dirichletNodes[i].size()-1-j] = true;
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RodAssembler<GridType> rodAssembler(grid);
rodAssembler.setShapeAndMaterial(0.01, 0.0001, 0.0001, 2.5e5, 0.3);
RodSolver<GridType> rodSolver;
rodSolver.setup(grid,
&rodAssembler,
x,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
mu, nu1, nu2,
baseIterations,
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
std::cout << "Energy: " << rodAssembler.computeEnergy(x) << std::endl;
rodSolver.setInitialSolution(x);
rodSolver.solve();
x = rodSolver.getSol();
// //////////////////////////////
// Output result
// //////////////////////////////
writeRod(x, "rod3d.result");
BlockVector<FieldVector<double, 6> > strain(x.size()-1);
rodAssembler.getStrain(x,strain);
//std::cout << strain << std::endl;
//exit(0);
//writeRod(x, "rod3d.strain");
// //////////////////////////////////////////////////////////
// Recompute and compare against exact solution
// //////////////////////////////////////////////////////////
SolutionType exactSolution = x;
// //////////////////////////////////////////////////////////
// Compute hessian of the rod functional at the exact solution
// for use of the energy norm it creates.
// //////////////////////////////////////////////////////////
BCRSMatrix<FieldMatrix<double, 6, 6> > hessian;
MatrixIndexSet indices(exactSolution.size(), exactSolution.size());
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessian);
rodAssembler.assembleMatrix(exactSolution, hessian);
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
double error = std::numeric_limits<double>::max();
double oldError = 0;
double totalConvRate = 1;
SolutionType intermediateSolution(x.size());
// Compute error of the initial 3d solution
// This should really be exactSol-initialSol, but we're starting
// from zero anyways
//oldError += computeEnergyNormSquared(exactSol3d, *hessian3d);
/** \todo Rod error still missing */
oldError = std::sqrt(oldError);
int i;
for (i=0; i<maxTrustRegionSteps; i++) {
// /////////////////////////////////////////////////////
// Read iteration from file
// /////////////////////////////////////////////////////
char iSolFilename[100];
sprintf(iSolFilename, "tmp/intermediateSolution_%04d", i);
FILE* fp = fopen(iSolFilename, "rb");
if (!fp)
DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
for (int j=0; j<intermediateSolution.size(); j++) {
fread(&intermediateSolution[j].r, sizeof(double), 3, fp);
fread(&intermediateSolution[j].q, sizeof(double), 4, fp);
}
fclose(fp);
// /////////////////////////////////////////////////////
// Compute error
// /////////////////////////////////////////////////////
typedef BlockVector<FieldVector<double,6> > RodDifferenceType;
RodDifferenceType rodDifference = computeRodDifference(exactSolution, intermediateSolution);
error = std::sqrt(computeEnergyNormSquared(rodDifference, hessian));
double convRate = error / oldError;
totalConvRate *= convRate;
// Output
std::cout << "Trust-region iteration: " << i << " error : " << error << ", "
<< "convrate " << convRate
<< " total conv rate " << std::pow(totalConvRate, 1/((double)i+1)) << std::endl;
if (error < 1e-12)
break;
oldError = error;
}
// //////////////////////////////
} catch (Exception e) {
std::cout << e << std::endl;
}