Newer
Older

Oliver Sander
committed
#include <config.h>
#include <dune/common/bitsetvector.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>

Oliver Sander
committed
#include <dune/grid/onedgrid.hh>
#include <dune/istl/io.hh>
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
#include <dune/fufem/assemblers/operatorassembler.hh>
#include <dune/fufem/assemblers/localassemblers/laplaceassembler.hh>
#include <dune/fufem/assemblers/localassemblers/massassembler.hh>

Oliver Sander
committed
#include <dune/solvers/solvers/iterativesolver.hh>
#include <dune/solvers/norms/energynorm.hh>

Oliver Sander
committed
#include <dune/gfe/rigidbodymotion.hh>
#include <dune/gfe/geodesicdifference.hh>
#include <dune/gfe/rotation.hh>
#include <dune/gfe/rodassembler.hh>
#include <dune/gfe/riemanniantrsolver.hh>
#include <dune/gfe/geodesicfefunctionadaptor.hh>

Oliver Sander
committed
typedef Dune::OneDGrid GridType;
typedef RigidBodyMotion<double,3> TargetSpace;
typedef std::vector<RigidBodyMotion<double,3> > SolutionType;

Oliver Sander
committed
const int blocksize = TargetSpace::TangentVector::dimension;

Oliver Sander
committed
using namespace Dune;
using std::string;
void solve (const GridType& grid,

Oliver Sander
committed
const TargetSpace& dirichletValue,
const ParameterTree& parameters)

Oliver Sander
committed
{
// read solver setting
const double innerTolerance = parameters.get<double>("innerTolerance");
const double tolerance = parameters.get<double>("tolerance");
const int maxTrustRegionSteps = parameters.get<int>("maxTrustRegionSteps");
const double initialTrustRegionRadius = parameters.get<double>("initialTrustRegionRadius");
const int multigridIterations = parameters.get<int>("numIt");
// read rod parameter settings
const double A = parameters.get<double>("A");
const double J1 = parameters.get<double>("J1");
const double J2 = parameters.get<double>("J2");
const double E = parameters.get<double>("E");
const double nu = parameters.get<double>("nu");
// Create a local assembler
RodLocalStiffness<OneDGrid::LeafGridView,double> localStiffness(grid.leafView(),
A, J1, J2, E, nu);
x.resize(grid.size(1));
// //////////////////////////
// Initial solution
// //////////////////////////
for (int i=0; i<x.size(); i++) {
x[i].r[0] = 0;
x[i].r[1] = 0;
x[i].r[2] = double(i)/(x.size()-1);
x[i].q = Rotation<double,3>::identity();

Oliver Sander
committed
}
// set Dirichlet value
x.back() = dirichletValue;
// Both ends are Dirichlet
BitSetVector<blocksize> dirichletNodes(grid.size(1));
dirichletNodes.unsetAll();
dirichletNodes[0] = dirichletNodes.back() = true;
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RodAssembler<GridType::LeafGridView,3> rodAssembler(grid.leafView(), &localStiffness);

Oliver Sander
committed
RiemannianTrustRegionSolver<GridType,RigidBodyMotion<double,3> > rodSolver;

Oliver Sander
committed
rodSolver.setup(grid,
&rodAssembler,
x,
dirichletNodes,
tolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
innerTolerance,
1, 3, 3,
100, // iterations of the base solver
1e-8, // base tolerance

Oliver Sander
committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
false); // instrumentation
#else
rodSolver.setupTCG(grid,
&rodAssembler,
x,
dirichletNodes,
tolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
innerTolerance,
false); // instrumentation
#endif
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
rodSolver.setInitialSolution(x);
rodSolver.solve();
x = rodSolver.getSol();
}
int main (int argc, char *argv[]) try
{
// parse data file
ParameterTree parameterSet;

Oliver Sander
committed
if (argc==2)
ParameterTreeParser::readINITree(argv[1], parameterSet);

Oliver Sander
committed
else
ParameterTreeParser::readINITree("rod-eoc.parset", parameterSet);

Oliver Sander
committed
// read solver settings
const int numLevels = parameterSet.get<int>("numLevels");
const int nu1 = parameterSet.get<int>("nu1");
const int nu2 = parameterSet.get<int>("nu2");
const int mu = parameterSet.get<int>("mu");
const int baseIterations = parameterSet.get<int>("baseIt");
const double baseTolerance = parameterSet.get<double>("baseTolerance");
const int numRodBaseElements = parameterSet.get<int>("numRodBaseElements");
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
RigidBodyMotion<double,3> dirichletValue;

Oliver Sander
committed
dirichletValue.r[0] = parameterSet.get<double>("dirichletValueX");
dirichletValue.r[1] = parameterSet.get<double>("dirichletValueY");
dirichletValue.r[2] = parameterSet.get<double>("dirichletValueZ");
FieldVector<double,3> axis;
axis[0] = parameterSet.get<double>("dirichletAxisX");
axis[1] = parameterSet.get<double>("dirichletAxisY");
axis[2] = parameterSet.get<double>("dirichletAxisZ");
double angle = parameterSet.get<double>("dirichletAngle");
dirichletValue.q = Rotation<double,3>(axis, M_PI*angle/180);

Oliver Sander
committed
// ///////////////////////////////////////////////////////////
// First compute the 'exact' solution on a very fine grid
// ///////////////////////////////////////////////////////////
// Create the reference grid
GridType referenceGrid(numRodBaseElements, 0, 1);
referenceGrid.globalRefine(numLevels-1);
// Solve the rod Dirichlet problem
SolutionType referenceSolution;
solve(referenceGrid, referenceSolution, numLevels, dirichletValue, parameterSet);
// //////////////////////////////////////////////////////////////////////
// Compute mass matrix and laplace matrix to emulate L2 and H1 norms
// //////////////////////////////////////////////////////////////////////
typedef P1NodalBasis<GridType::LeafGridView,double> FEBasis;
FEBasis basis(referenceGrid.leafView());
OperatorAssembler<FEBasis,FEBasis> operatorAssembler(basis, basis);
LaplaceAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> laplaceLocalAssembler;
MassAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> massMatrixLocalAssembler;
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > ScalarMatrixType;
ScalarMatrixType laplace, massMatrix;
operatorAssembler.assemble(laplaceLocalAssembler, laplace);
operatorAssembler.assemble(massMatrixLocalAssembler, massMatrix);

Oliver Sander
committed
// ///////////////////////////////////////////////////////////
// Compute on all coarser levels, and compare
// ///////////////////////////////////////////////////////////
for (int i=1; i<=numLevels; i++) {
GridType grid(numRodBaseElements, 0, 1);
grid.globalRefine(i-1);
// compute again
SolutionType solution;
solve(grid, solution, i, dirichletValue, parameterSet);
// Prolong solution to the very finest grid
for (int j=i; j<numLevels; j++)
geodesicFEFunctionAdaptor(grid, solution);

Oliver Sander
committed
std::stringstream numberAsAscii;
numberAsAscii << i;
writeRod(solution, "rodGrid_" + numberAsAscii.str());

Oliver Sander
committed
assert(referenceSolution.size() == solution.size());
BlockVector<TargetSpace::TangentVector> difference = computeGeodesicDifference(solution,referenceSolution);
H1SemiNorm< BlockVector<TargetSpace::TangentVector> > h1Norm(laplace);
H1SemiNorm< BlockVector<TargetSpace::TangentVector> > l2Norm(massMatrix);

Oliver Sander
committed
// Compute max-norm difference
std::cout << "Level: " << i-1
<< ", max-norm error: " << difference.infinity_norm()
<< std::endl;
std::cout << "Level: " << i-1
<< ", L2 error: " << l2Norm(difference)
<< std::endl;
std::cout << "Level: " << i-1
<< ", H1 error: " << h1Norm(difference)