Newer
Older

Oliver Sander
committed
typedef double FDType;
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers
#include <adolc/taping.h>

Oliver Sander
committed
#include <dune/gfe/adolcnamespaceinjections.hh>
#include <dune/common/fmatrix.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/istl/io.hh>
#include <dune/fufem/functionspacebases/p2nodalbasis.hh>
#include <dune/gfe/rotation.hh>
#include <dune/gfe/localgeodesicfestiffness.hh>
#include <dune/gfe/localgeodesicfefunction.hh>
#include <dune/gfe/rotation.hh>
// grid dimension
const int dim = 2;
// Image space of the geodesic fe functions
typedef Rotation<double,3> TargetSpace;
template<class GridView, class LocalFiniteElement, int dim, class field_type=double>
class CosseratEnergyLocalStiffness
: public LocalGeodesicFEStiffness<GridView,LocalFiniteElement,Rotation<field_type,dim> >
// grid types
typedef typename GridView::Grid::ctype DT;
typedef Rotation<field_type,dim> TargetSpace;
typedef typename TargetSpace::ctype RT;
typedef typename GridView::template Codim<0>::Entity Entity;
// some other sizes
enum {gridDim=GridView::dimension};
/** \brief Assemble the energy for a single element */
RT energy (const Entity& element,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution) const
{
assert(element.type() == localFiniteElement.type());
typedef typename GridView::template Codim<0>::Entity::Geometry Geometry;
typedef LocalGeodesicFEFunction<gridDim, DT, LocalFiniteElement, TargetSpace> LocalGFEFunctionType;
LocalGFEFunctionType localGeodesicFEFunction(localFiniteElement,localSolution);
int quadOrder = (element.type().isSimplex()) ? localFiniteElement.localBasis().order()
: localFiniteElement.localBasis().order() * gridDim;
const Dune::QuadratureRule<DT, gridDim>& quad
= Dune::QuadratureRules<DT, gridDim>::rule(element.type(), quadOrder);
for (size_t pt=0; pt<quad.size(); pt++) {
// Local position of the quadrature point
const Dune::FieldVector<DT,gridDim>& quadPos = quad[pt].position();
const DT integrationElement = element.geometry().integrationElement(quadPos);
const typename Geometry::JacobianInverseTransposed& jacobianInverseTransposed = element.geometry().jacobianInverseTransposed(quadPos);
DT weight = quad[pt].weight() * integrationElement;
// The value of the local function
Rotation<field_type,dim> value = localGeodesicFEFunction.evaluate(quadPos);
// The derivative of the local function defined on the reference element
typename LocalGFEFunctionType::DerivativeType referenceDerivative = localGeodesicFEFunction.evaluateDerivative(quadPos,value);
// The derivative of the function defined on the actual element
typename LocalGFEFunctionType::DerivativeType derivative(0);
for (size_t comp=0; comp<referenceDerivative.N(); comp++)
jacobianInverseTransposed.umv(referenceDerivative[comp], derivative[comp]);
//////////////////////////////////////////////////////////
// Compute the derivative of the rotation
// Note: we need it in matrix coordinates
//////////////////////////////////////////////////////////
Dune::FieldMatrix<field_type,dim,dim> R;
value.matrix(R);
// Add the local energy density
energy += 2.5e3*weight *derivative.frobenius_norm2();
/** \brief Assembles energy gradient and Hessian with ADOL-C
*/
template<class GridView, class LocalFiniteElement>
class LocalGeodesicFEADOLCStiffness
{
// grid types
typedef typename GridView::Grid::ctype DT;
typedef typename TargetSpace::ctype RT;
typedef typename GridView::template Codim<0>::Entity Entity;
typedef typename TargetSpace::template rebind<adouble>::other ATargetSpace;
// some other sizes
enum {gridDim=GridView::dimension};
//! Dimension of the embedding space
enum { embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension };
LocalGeodesicFEADOLCStiffness(const LocalGeodesicFEStiffness<GridView, LocalFiniteElement, ATargetSpace>* energy)
: localEnergy_(energy)
{}
/** \brief Compute the energy at the current configuration */
virtual RT energy (const Entity& e,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution) const;
/** \brief Assemble the local stiffness matrix at the current position
This uses the automatic differentiation toolbox ADOL_C.
*/
virtual void assembleGradientAndHessian(const Entity& e,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double, 4> >& localGradient,
Dune::Matrix<Dune::FieldMatrix<RT,embeddedBlocksize,embeddedBlocksize> >& localHessian,
bool vectorMode);
const LocalGeodesicFEStiffness<GridView, LocalFiniteElement, ATargetSpace>* localEnergy_;
template <class GridView, class LocalFiniteElement>
typename LocalGeodesicFEADOLCStiffness<GridView, LocalFiniteElement>::RT
LocalGeodesicFEADOLCStiffness<GridView, LocalFiniteElement>::
energy(const Entity& element,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution) const
{
double pureEnergy;
std::vector<ATargetSpace> localASolution(localSolution.size());

Oliver Sander
committed
// The following loop is not quite intuitive: we copy the localSolution into an
// array of FieldVector<double>, go from there to FieldVector<adouble> and
// only then to ATargetSpace.
// Rationale: The constructor/assignment-from-vector of TargetSpace frequently
// contains a projection onto the manifold from the surrounding Euclidean space.
// ADOL-C needs a function on the whole Euclidean space, hence that projection
// is part of the function and needs to be taped.
// The following variable cannot be declared inside of the loop, or ADOL-C will report wrong results
// (Presumably because several independent variables use the same memory location.)
std::vector<typename ATargetSpace::CoordinateType> aRaw(localSolution.size());
for (size_t i=0; i<localSolution.size(); i++) {
typename TargetSpace::CoordinateType raw = localSolution[i].globalCoordinates();
for (size_t j=0; j<raw.size(); j++)
aRaw[i][j] <<= raw[j];
localASolution[i] = aRaw[i]; // may contain a projection onto M -- needs to be done in adouble
}
energy = localEnergy_->energy(element,localFiniteElement,localASolution);
trace_off();
return pureEnergy;
}
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// ///////////////////////////////////////////////////////////
// Compute gradient and Hessian together
// To compute the Hessian we need to compute the gradient anyway, so we may
// as well return it. This saves assembly time.
// ///////////////////////////////////////////////////////////
template <class GridType, class LocalFiniteElement>
void LocalGeodesicFEADOLCStiffness<GridType, LocalFiniteElement>::
assembleGradientAndHessian(const Entity& element,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double,4> >& localGradient,
Dune::Matrix<Dune::FieldMatrix<RT,embeddedBlocksize,embeddedBlocksize> >& localHessian,
bool vectorMode)
{
// Tape energy computation. We may not have to do this every time, but it's comparatively cheap.
energy(element, localFiniteElement, localSolution);
/////////////////////////////////////////////////////////////////
// Compute the gradient.
/////////////////////////////////////////////////////////////////
// Copy data from Dune data structures to plain-C ones
size_t nDofs = localSolution.size();
size_t nDoubles = nDofs*embeddedBlocksize;
std::vector<double> xp(nDoubles);
int idx=0;
for (size_t i=0; i<nDofs; i++)
for (size_t j=0; j<embeddedBlocksize; j++)
xp[idx++] = localSolution[i].globalCoordinates()[j];
// Compute gradient
std::vector<double> g(nDoubles);
gradient(1,nDoubles,xp.data(),g.data()); // gradient evaluation
// Copy into Dune type
std::vector<typename TargetSpace::EmbeddedTangentVector> localEmbeddedGradient(localSolution.size());
idx=0;
for (size_t i=0; i<nDofs; i++)
for (size_t j=0; j<embeddedBlocksize; j++)
localGradient[i][j] = g[idx++];
/////////////////////////////////////////////////////////////////
// Compute Hessian
/////////////////////////////////////////////////////////////////
localHessian.setSize(nDofs,nDofs);
double* rawHessian[nDoubles];
for(size_t i=0; i<nDoubles; i++)
rawHessian[i] = (double*)malloc((i+1)*sizeof(double));
if (vectorMode)
hessian2(1,nDoubles,xp.data(),rawHessian);
else
hessian(1,nDoubles,xp.data(),rawHessian);
// Copy Hessian into Dune data type
for(size_t i=0; i<nDoubles; i++)
for (size_t j=0; j<nDoubles; j++)
{
double value = (i>=j) ? rawHessian[i][j] : rawHessian[j][i];
localHessian[j/embeddedBlocksize][i/embeddedBlocksize][j%embeddedBlocksize][i%embeddedBlocksize] = value;
}
for(size_t i=0; i<nDoubles; i++)
free(rawHessian[i]);

Oliver Sander
committed
/** \brief Assembles energy gradient and Hessian with finite differences

Oliver Sander
committed
template<class GridView, class LocalFiniteElement, class field_type=double>
class LocalGeodesicFEFDStiffness
{
// grid types
typedef typename GridView::Grid::ctype DT;
typedef typename GridView::template Codim<0>::Entity Entity;
typedef typename TargetSpace::template rebind<field_type>::other ATargetSpace;
public:
//! Dimension of a tangent space
enum { blocksize = TargetSpace::TangentVector::dimension };
//! Dimension of the embedding space
enum { embeddedBlocksize = TargetSpace::EmbeddedTangentVector::dimension };
LocalGeodesicFEFDStiffness(const LocalGeodesicFEStiffness<GridView, LocalFiniteElement, ATargetSpace>* energy)
: localEnergy_(energy)
{}
virtual void assembleGradientAndHessian(const Entity& e,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double,4> >& localGradient,

Oliver Sander
committed
Dune::Matrix<Dune::FieldMatrix<double,embeddedBlocksize,embeddedBlocksize> >& localHessian);
const LocalGeodesicFEStiffness<GridView, LocalFiniteElement, ATargetSpace>* localEnergy_;
};
// ///////////////////////////////////////////////////////////
// Compute gradient by finite-difference approximation
// ///////////////////////////////////////////////////////////

Oliver Sander
committed
template <class GridType, class LocalFiniteElement, class field_type>
void LocalGeodesicFEFDStiffness<GridType, LocalFiniteElement, field_type>::
assembleGradientAndHessian(const Entity& element,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution,
std::vector<Dune::FieldVector<double, 4> >& localGradient,

Oliver Sander
committed
Dune::Matrix<Dune::FieldMatrix<double,embeddedBlocksize,embeddedBlocksize> >& localHessian)
{
// Number of degrees of freedom for this element
size_t nDofs = localSolution.size();
// Clear assemble data
localHessian.setSize(nDofs, nDofs);
localHessian = 0;

Oliver Sander
committed
const field_type eps = 1e-4;
std::vector<ATargetSpace> localASolution(localSolution.size());
std::vector<typename ATargetSpace::CoordinateType> aRaw(localSolution.size());
for (size_t i=0; i<localSolution.size(); i++) {
typename TargetSpace::CoordinateType raw = localSolution[i].globalCoordinates();
for (size_t j=0; j<raw.size(); j++)
aRaw[i][j] = raw[j];
localASolution[i] = aRaw[i]; // may contain a projection onto M -- needs to be done in adouble
}

Oliver Sander
committed
std::vector<Dune::FieldMatrix<field_type,embeddedBlocksize,embeddedBlocksize> > B(localSolution.size());
for (size_t i=0; i<B.size(); i++)
{
B[i] = 0;
for (int j=0; j<embeddedBlocksize; j++)
B[i][j][j] = 1.0;
}
// Precompute negative energy at the current configuration
// (negative because that is how we need it as part of the 2nd-order fd formula)
field_type centerValue = -localEnergy_->energy(element, localFiniteElement, localSolution);
// Precompute energy infinitesimal corrections in the directions of the local basis vectors

Oliver Sander
committed
std::vector<Dune::array<field_type,embeddedBlocksize> > forwardEnergy(nDofs);
std::vector<Dune::array<field_type,embeddedBlocksize> > backwardEnergy(nDofs);
for (size_t i=0; i<localSolution.size(); i++) {
for (size_t i2=0; i2<embeddedBlocksize; i2++) {
typename ATargetSpace::EmbeddedTangentVector epsXi = B[i][i2];
typename ATargetSpace::EmbeddedTangentVector minusEpsXi = epsXi;
std::vector<ATargetSpace> forwardSolution = localASolution;
std::vector<ATargetSpace> backwardSolution = localASolution;
forwardSolution[i] = ATargetSpace(localASolution[i].globalCoordinates() + epsXi);
backwardSolution[i] = ATargetSpace(localASolution[i].globalCoordinates() + minusEpsXi);
forwardEnergy[i][i2] = localEnergy_->energy(element, localFiniteElement, forwardSolution);
backwardEnergy[i][i2] = localEnergy_->energy(element, localFiniteElement, backwardSolution);
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
}
}
//////////////////////////////////////////////////////////////
// Compute gradient by finite-difference approximation
//////////////////////////////////////////////////////////////
localGradient.resize(localSolution.size());
for (size_t i=0; i<localSolution.size(); i++)
for (int j=0; j<embeddedBlocksize; j++)
localGradient[i][j] = (forwardEnergy[i][j] - backwardEnergy[i][j]) / (2*eps);
///////////////////////////////////////////////////////////////////////////
// Compute Riemannian Hesse matrix by finite-difference approximation.
// We loop over the lower left triangular half of the matrix.
// The other half follows from symmetry.
///////////////////////////////////////////////////////////////////////////
//#pragma omp parallel for schedule (dynamic)
for (size_t i=0; i<localSolution.size(); i++) {
for (size_t i2=0; i2<embeddedBlocksize; i2++) {
for (size_t j=0; j<=i; j++) {
for (size_t j2=0; j2<((i==j) ? i2+1 : embeddedBlocksize); j2++) {
std::vector<ATargetSpace> forwardSolutionXiEta = localASolution;
std::vector<ATargetSpace> backwardSolutionXiEta = localASolution;
typename ATargetSpace::EmbeddedTangentVector epsXi = B[i][i2]; epsXi *= eps;
typename ATargetSpace::EmbeddedTangentVector epsEta = B[j][j2]; epsEta *= eps;
typename ATargetSpace::EmbeddedTangentVector minusEpsXi = epsXi; minusEpsXi *= -1;
typename ATargetSpace::EmbeddedTangentVector minusEpsEta = epsEta; minusEpsEta *= -1;
forwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + epsXi+epsEta);
forwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + epsXi);
forwardSolutionXiEta[j] = ATargetSpace(localASolution[j].globalCoordinates() + epsEta);
backwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + minusEpsXi+minusEpsEta);
backwardSolutionXiEta[i] = ATargetSpace(localASolution[i].globalCoordinates() + minusEpsXi);
backwardSolutionXiEta[j] = ATargetSpace(localASolution[j].globalCoordinates() + minusEpsEta);
field_type forwardValue = localEnergy_->energy(element, localFiniteElement, forwardSolutionXiEta) - forwardEnergy[i][i2] - forwardEnergy[j][j2];
field_type backwardValue = localEnergy_->energy(element, localFiniteElement, backwardSolutionXiEta) - backwardEnergy[i][i2] - backwardEnergy[j][j2];
localHessian[i][j][i2][j2] = localHessian[j][i][j2][i2] = 0.5 * (forwardValue - 2*centerValue + backwardValue) / (eps*eps);
}
}
}
}
}
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// Compare two matrices
void compareMatrices(const Matrix<FieldMatrix<double,4,4> >& matrixA, std::string nameA,
const Matrix<FieldMatrix<double,4,4> >& matrixB, std::string nameB)
{
double maxAbsDifference = -1;
double maxRelDifference = -1;
for(int i=0; i<matrixA.N(); i++) {
for (int j=0; j<matrixA.M(); j++ ) {
for (int ii=0; ii<4; ii++)
for (int jj=0; jj<4; jj++)
{
double valueA = matrixA[i][j][ii][jj];
double valueB = matrixB[i][j][ii][jj];
double absDifference = valueA - valueB;
double relDifference = std::abs(absDifference) / std::abs(valueA);
maxAbsDifference = std::max(maxAbsDifference, std::abs(absDifference));
if (not isinf(relDifference))
maxRelDifference = std::max(maxRelDifference, relDifference);
if (relDifference > 1)
std::cout << i << ", " << j << " " << ii << ", " << jj
<< ", " << nameA << ": " << valueA << ", " << nameB << ": " << valueB << std::endl;
}
}
}
std::cout << nameA << " vs. " << nameB << " -- max absolute / relative difference is " << maxAbsDifference << " / " << maxRelDifference << std::endl;
int main (int argc, char *argv[]) try
typedef std::vector<TargetSpace> SolutionType;
// ///////////////////////////////////////
// Create the grid
// ///////////////////////////////////////
typedef YaspGrid<dim> GridType;
FieldVector<double,dim> upper = {{0.38, 0.128}};
array<int,dim> elements = {{15, 5}};
GridType grid(upper, elements);
typedef GridType::LeafGridView GridView;
GridView gridView = grid.leafGridView();
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
typedef P2NodalBasis<GridView,double> FEBasis;
FEBasis feBasis(gridView);
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
// //////////////////////////
// Initial iterate
// //////////////////////////
SolutionType x(feBasis.size());
//////////////////////////////////////////7
// Read initial iterate from file
//////////////////////////////////////////7
Dune::BlockVector<FieldVector<double,7> > xEmbedded(x.size());
std::ifstream file("dangerous_iterate", std::ios::in|std::ios::binary);
if (not(file))
DUNE_THROW(SolverError, "Couldn't open file 'dangerous_iterate' for reading");
GenericVector::readBinary(file, xEmbedded);
file.close();
for (int ii=0; ii<x.size(); ii++)
{
// The first 3 of the 7 entries are irrelevant
FieldVector<double, 4> rotationEmbedded;
for (int jj=0; jj<4; jj++)
rotationEmbedded[jj] = xEmbedded[ii][jj+3];
x[ii] = TargetSpace(rotationEmbedded);
}
// ////////////////////////////////////////////////////////////
// Create an assembler for the energy functional
// ////////////////////////////////////////////////////////////
// Assembler using ADOL-C
CosseratEnergyLocalStiffness<GridView,
FEBasis::LocalFiniteElement,
3,adouble> cosseratEnergyADOLCLocalStiffness;
LocalGeodesicFEADOLCStiffness<GridView,
FEBasis::LocalFiniteElement> localGFEADOLCStiffness(&cosseratEnergyADOLCLocalStiffness);
CosseratEnergyLocalStiffness<GridView,
FEBasis::LocalFiniteElement,
3,FDType> cosseratEnergyFDLocalStiffness;
LocalGeodesicFEFDStiffness<GridView,
FEBasis::LocalFiniteElement,FDType> localGFEFDStiffness(&cosseratEnergyFDLocalStiffness);
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
// Compute and compare matrices
auto it = gridView.template begin<0>();
auto endit = gridView.template end<0> ();
for( ; it != endit; ++it ) {
std::cout << " ++++ element " << gridView.indexSet().index(*it) << " ++++" << std::endl;
const int numOfBaseFct = feBasis.getLocalFiniteElement(*it).localBasis().size();
// Extract local solution
std::vector<TargetSpace> localSolution(numOfBaseFct);
for (int i=0; i<numOfBaseFct; i++)
localSolution[i] = x[feBasis.index(*it,i)];
std::vector<Dune::FieldVector<double,4> > localADGradient(numOfBaseFct);
std::vector<Dune::FieldVector<double,4> > localADVMGradient(numOfBaseFct); // VM: vector-mode
std::vector<Dune::FieldVector<double,4> > localFDGradient(numOfBaseFct);
Matrix<FieldMatrix<double,4,4> > localADHessian;
Matrix<FieldMatrix<double,4,4> > localADVMHessian; // VM: vector-mode
Matrix<FieldMatrix<double,4,4> > localFDHessian;
// setup local matrix and gradient
localGFEADOLCStiffness.assembleGradientAndHessian(*it,
feBasis.getLocalFiniteElement(*it),
localSolution,
localADGradient,
localADHessian,
false); // 'true' means 'vector mode'
localGFEADOLCStiffness.assembleGradientAndHessian(*it,
feBasis.getLocalFiniteElement(*it),
localSolution,
localADGradient,
localADVMHessian,
true); // 'true' means 'vector mode'
localGFEFDStiffness.assembleGradientAndHessian(*it, feBasis.getLocalFiniteElement(*it), localSolution, localFDGradient, localFDHessian);
compareMatrices(localADHessian, "AD", localFDHessian, "FD");
compareMatrices(localADHessian, "AD scalar", localADVMHessian, "AD vector");
}
// //////////////////////////////
} catch (Exception e) {
std::cout << e << std::endl;
}