-
Oliver Sander authored
[[Imported from SVN: r8876]]
Oliver Sander authored[[Imported from SVN: r8876]]
harmonicmaps-eoc.cc 12.18 KiB
#include <config.h>
//#define HARMONIC_ENERGY_FD_GRADIENT
//#define HARMONIC_ENERGY_FD_INNER_GRADIENT
#define THIRD_ORDER
//#define SECOND_ORDER
const int order = 3;
#include <dune/common/bitsetvector.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/grid/uggrid.hh>
#include <dune/grid/onedgrid.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/grid/io/file/amirameshwriter.hh>
#include <dune/grid/io/file/amirameshreader.hh>
#include <dune/fufem/functionspacebases/p1nodalbasis.hh>
#include <dune/fufem/functionspacebases/p2nodalbasis.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/fufem/assemblers/operatorassembler.hh>
#include <dune/fufem/assemblers/localassemblers/laplaceassembler.hh>
#include <dune/fufem/assemblers/localassemblers/massassembler.hh>
#include <dune/fufem/functiontools/boundarydofs.hh>
#include <dune/fufem/functiontools/basisinterpolator.hh>
#include <dune/solvers/solvers/iterativesolver.hh>
#include <dune/solvers/norms/h1seminorm.hh>
#include <dune/gfe/unitvector.hh>
#include <dune/gfe/harmonicenergystiffness.hh>
#include <dune/gfe/geodesicfeassembler.hh>
#include <dune/gfe/riemanniantrsolver.hh>
#include <dune/gfe/geodesicfefunctionadaptor.hh>
// grid dimension
const int dim = 2;
typedef UnitVector<double,3> TargetSpace;
typedef std::vector<TargetSpace> SolutionType;
const int blocksize = TargetSpace::TangentVector::dimension;
using namespace Dune;
using std::string;
struct DirichletFunction
: public Dune::VirtualFunction<FieldVector<double,dim>, TargetSpace::CoordinateType >
{
void evaluate(const FieldVector<double, dim>& x, TargetSpace::CoordinateType& out) const {
#if 0
FieldVector<double,3> axis;
axis[0] = x[0]; axis[1] = x[1]; axis[2] = 1;
Rotation<double,3> rotation(axis, x.two_norm()*M_PI*3);
FieldMatrix<double,3,3> rMat;
rotation.matrix(rMat);
out = rMat[2];
#endif
double angle = 0.5 * M_PI * x[0];
angle *= -4*x[1]*(x[1]-1);
out = 0;
out[0] = std::cos(angle);
out[1] = std::sin(angle);
}
};
template <class GridType>
void solve (const shared_ptr<GridType>& grid,
SolutionType& x,
int numLevels,
const ParameterTree& parameters)
{
// read solver setting
const double innerTolerance = parameters.get<double>("innerTolerance");
const double tolerance = parameters.get<double>("tolerance");
const int maxTrustRegionSteps = parameters.get<int>("maxTrustRegionSteps");
const double initialTrustRegionRadius = parameters.get<double>("initialTrustRegionRadius");
const int multigridIterations = parameters.get<int>("numIt");
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
BitSetVector<1> allNodes(grid->size(dim));
allNodes.setAll();
BoundaryPatch<typename GridType::LeafGridView> dirichletBoundary(grid->leafView(), allNodes);
#if defined THIRD_ORDER
typedef P3NodalBasis<typename GridType::LeafGridView,double> FEBasis;
#elif defined SECOND_ORDER
typedef P2NodalBasis<typename GridType::LeafGridView,double> FEBasis;
#else
typedef P1NodalBasis<typename GridType::LeafGridView,double> FEBasis;
#endif
FEBasis feBasis(grid->leafView());
BitSetVector<blocksize> dirichletNodes;
constructBoundaryDofs(dirichletBoundary,feBasis,dirichletNodes);
// //////////////////////////
// Initial solution
// //////////////////////////
x.resize(feBasis.size());
BlockVector<TargetSpace::CoordinateType> dirichletFunctionValues;
DirichletFunction dirichletFunction;
Functions::interpolate(feBasis, dirichletFunctionValues, dirichletFunction);
TargetSpace::CoordinateType innerValue(0);
innerValue[0] = 1;
innerValue[1] = 0;
for (size_t i=0; i<x.size(); i++)
x[i] = (dirichletNodes[i][0]) ? dirichletFunctionValues[i] : innerValue;
// ////////////////////////////////////////////////////////////
// Create an assembler for the Harmonic Energy Functional
// ////////////////////////////////////////////////////////////
HarmonicEnergyLocalStiffness<typename GridType::LeafGridView,typename FEBasis::LocalFiniteElement, TargetSpace> harmonicEnergyLocalStiffness;
GeodesicFEAssembler<FEBasis,TargetSpace> assembler(grid->leafView(),
&harmonicEnergyLocalStiffness);
// ///////////////////////////////////////////
// Create a solver for the rod problem
// ///////////////////////////////////////////
RiemannianTrustRegionSolver<GridType,TargetSpace> solver;
solver.setup(*grid,
&assembler,
x,
dirichletNodes,
tolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
innerTolerance,
1, 3, 3,
100, // iterations of the base solver
1e-8, // base tolerance
false); // instrumentation
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
solver.setInitialSolution(x);
solver.solve();
x = solver.getSol();
}
int main (int argc, char *argv[]) try
{
// parse data file
ParameterTree parameterSet;
if (argc==2)
ParameterTreeParser::readINITree(argv[1], parameterSet);
else
ParameterTreeParser::readINITree("harmonicmaps-eoc.parset", parameterSet);
// read solver settings
const int numLevels = parameterSet.get<int>("numLevels");
const int baseIterations = parameterSet.get<int>("baseIt");
const double baseTolerance = parameterSet.get<double>("baseTolerance");
// only if a structured grid is used
const int numBaseElements = parameterSet.get<int>("numBaseElements");
FieldVector<double,dim> lowerLeft = parameterSet.get<FieldVector<double,dim> >("lowerLeft");
FieldVector<double,dim> upperRight = parameterSet.get<FieldVector<double,dim> >("upperRight");
// ///////////////////////////////////////////////////////////
// First compute the 'exact' solution on a very fine grid
// ///////////////////////////////////////////////////////////
typedef std::conditional<dim==1,OneDGrid,UGGrid<dim> >::type GridType;
// Create the reference grid
shared_ptr<GridType> referenceGrid;
if (parameterSet.get<std::string>("gridType")=="structured") {
array<unsigned int,dim> elements;
elements.fill(numBaseElements);
referenceGrid = StructuredGridFactory<GridType>::createSimplexGrid(lowerLeft,
upperRight,
elements);
} else {
referenceGrid = shared_ptr<GridType>(AmiraMeshReader<GridType>::read(parameterSet.get<std::string>("gridFile")));
}
referenceGrid->globalRefine(numLevels-1);
// Solve the rod Dirichlet problem
SolutionType referenceSolution;
solve(referenceGrid, referenceSolution, numLevels, parameterSet);
BlockVector<TargetSpace::CoordinateType> xEmbedded(referenceSolution.size());
for (int j=0; j<referenceSolution.size(); j++)
xEmbedded[j] = referenceSolution[j].globalCoordinates();
#if !defined THIRD_ORDER && ! defined SECOND_ORDER
LeafAmiraMeshWriter<GridType> amiramesh;
amiramesh.addGrid(referenceGrid->leafView());
amiramesh.addVertexData(xEmbedded, referenceGrid->leafView());
amiramesh.write("reference_result.am");
#endif
// //////////////////////////////////////////////////////////////////////
// Compute mass matrix and laplace matrix to emulate L2 and H1 norms
// //////////////////////////////////////////////////////////////////////
#ifdef THIRD_ORDER
typedef P3NodalBasis<GridType::LeafGridView,double> FEBasis;
#elif defined SECOND_ORDER
typedef P2NodalBasis<GridType::LeafGridView,double> FEBasis;
#else
typedef P1NodalBasis<GridType::LeafGridView,double> FEBasis;
#endif
FEBasis referenceBasis(referenceGrid->leafView());
OperatorAssembler<FEBasis,FEBasis> operatorAssembler(referenceBasis, referenceBasis);
LaplaceAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> laplaceLocalAssembler(2*(order-1));
MassAssembler<GridType, FEBasis::LocalFiniteElement, FEBasis::LocalFiniteElement> massMatrixLocalAssembler(2*order);
typedef Dune::BCRSMatrix<Dune::FieldMatrix<double,1,1> > ScalarMatrixType;
ScalarMatrixType laplace, massMatrix;
operatorAssembler.assemble(laplaceLocalAssembler, laplace);
operatorAssembler.assemble(massMatrixLocalAssembler, massMatrix);
// ///////////////////////////////////////////////////////////
// Compute on all coarser levels, and compare
// ///////////////////////////////////////////////////////////
std::ofstream logFile("harmonicmaps-eoc.results");
logFile << "# mesh size, max-norm, L2-norm, h1-seminorm" << std::endl;
for (int i=1; i<numLevels; i++) {
shared_ptr<GridType> grid;
if (parameterSet.get<std::string>("gridType")=="structured") {
array<unsigned int,dim> elements;
elements.fill(numBaseElements);
grid = StructuredGridFactory<GridType>::createSimplexGrid(lowerLeft,
upperRight,
elements);
} else {
grid = shared_ptr<GridType>(AmiraMeshReader<GridType>::read(parameterSet.get<std::string>("gridFile")));
}
grid->globalRefine(i-1);
// compute again
SolutionType solution;
solve(grid, solution, i, parameterSet);
// write solution
std::stringstream numberAsAscii;
numberAsAscii << i;
BlockVector<TargetSpace::CoordinateType> xEmbedded(solution.size());
for (int j=0; j<solution.size(); j++)
xEmbedded[j] = solution[j].globalCoordinates();
#if ! defined THIRD_ORDER && ! defined SECOND_ORDER
LeafAmiraMeshWriter<GridType> amiramesh;
amiramesh.addGrid(grid->leafView());
amiramesh.addVertexData(xEmbedded, grid->leafView());
amiramesh.write("harmonic_result_" + numberAsAscii.str() + ".am");
#endif
// Prolong solution to the very finest grid
for (int j=i; j<numLevels; j++) {
FEBasis basis(grid->leafView());
#if defined THIRD_ORDER || defined SECOND_ORDER
GeodesicFEFunctionAdaptor<FEBasis,TargetSpace>::higherOrderGFEFunctionAdaptor<order>(basis, *grid, solution);
#else
geodesicFEFunctionAdaptor(*grid, solution);
#endif
}
// Interpret TargetSpace as isometrically embedded into an R^m, because this is
// how the corresponding Sobolev spaces are defined.
BlockVector<TargetSpace::CoordinateType> difference(referenceSolution.size());
for (int j=0; j<referenceSolution.size(); j++)
difference[j] = solution[j].globalCoordinates() - referenceSolution[j].globalCoordinates();
H1SemiNorm< BlockVector<TargetSpace::CoordinateType> > h1Norm(laplace);
H1SemiNorm< BlockVector<TargetSpace::CoordinateType> > l2Norm(massMatrix);
// Compute max-norm difference
std::cout << "h: " << std::pow(0.5, i-1) << std::endl;
std::cout << "Level: " << i-1
<< ", max-norm error: " << difference.infinity_norm()
<< std::endl;
std::cout << "Level: " << i-1
<< ", L2 error: " << l2Norm(difference)
<< std::endl;
std::cout << "Level: " << i-1
<< ", H1 error: " << h1Norm(difference)
<< std::endl;
logFile << std::pow(0.5, i-1) << " " << difference.infinity_norm()
<< " " << l2Norm(difference)
<< " " << h1Norm(difference)
<< std::endl;
}
} catch (Exception e) {
std::cout << e << std::endl;
}