-
Oliver Sander authored
[[Imported from SVN: r9855]]
Oliver Sander authored[[Imported from SVN: r9855]]
mixedlocalgfeadolcstiffness.hh 22.32 KiB
#ifndef DUNE_GFE_MIXEDLOCALGFEADOLCSTIFFNESS_HH
#define DUNE_GFE_MIXEDLOCALGFEADOLCSTIFFNESS_HH
#include <adolc/adouble.h> // use of active doubles
#include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers
// gradient(.) and hessian(.)
#include <adolc/interfaces.h> // use of "Easy to Use" drivers
#include <adolc/taping.h> // use of taping
#include <dune/gfe/adolcnamespaceinjections.hh>
#include <dune/common/fmatrix.hh>
#include <dune/istl/matrix.hh>
#include <dune/gfe/mixedlocalgeodesicfestiffness.hh>
#define ADOLC_VECTOR_MODE
/** \brief Assembles energy gradient and Hessian with ADOL-C (automatic differentiation)
*/
template<class GridView,
class LocalFiniteElement0, class TargetSpace0,
class LocalFiniteElement1, class TargetSpace1>
class MixedLocalGFEADOLCStiffness
: public MixedLocalGeodesicFEStiffness<GridView,
LocalFiniteElement0,TargetSpace0,
LocalFiniteElement1,TargetSpace1>
{
// grid types
typedef typename GridView::Grid::ctype DT;
typedef typename TargetSpace0::ctype RT;
typedef typename GridView::template Codim<0>::Entity Entity;
// The 'active' target spaces, i.e., the number type is replaced by adouble
typedef typename TargetSpace0::template rebind<adouble>::other ATargetSpace0;
typedef typename TargetSpace1::template rebind<adouble>::other ATargetSpace1;
// some other sizes
enum {gridDim=GridView::dimension};
public:
//! Dimension of a tangent space
enum { blocksize0 = TargetSpace0::TangentVector::dimension };
enum { blocksize1 = TargetSpace1::TangentVector::dimension };
//! Dimension of the embedding space
enum { embeddedBlocksize0 = TargetSpace0::EmbeddedTangentVector::dimension };
enum { embeddedBlocksize1 = TargetSpace1::EmbeddedTangentVector::dimension };
MixedLocalGFEADOLCStiffness(const MixedLocalGeodesicFEStiffness<GridView,
LocalFiniteElement0, ATargetSpace0,
LocalFiniteElement1, ATargetSpace1>* energy)
: localEnergy_(energy)
{}
/** \brief Compute the energy at the current configuration */
virtual RT energy (const Entity& e,
const LocalFiniteElement0& localFiniteElement0,
const std::vector<TargetSpace0>& localConfiguration0,
const LocalFiniteElement1& localFiniteElement1,
const std::vector<TargetSpace1>& localConfiguration1) const;
#if 0
/** \brief Assemble the element gradient of the energy functional
This uses the automatic differentiation toolbox ADOL_C.
*/
virtual void assembleGradient(const Entity& element,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& solution,
std::vector<typename TargetSpace::TangentVector>& gradient) const;
#endif
/** \brief Assemble the local stiffness matrix at the current position
This uses the automatic differentiation toolbox ADOL_C.
*/
virtual void assembleGradientAndHessian(const Entity& e,
const LocalFiniteElement0& localFiniteElement0,
const std::vector<TargetSpace0>& localConfiguration0,
const LocalFiniteElement1& localFiniteElement1,
const std::vector<TargetSpace1>& localConfiguration1,
std::vector<typename TargetSpace0::TangentVector>& localGradient0,
std::vector<typename TargetSpace1::TangentVector>& localGradient1);
const MixedLocalGeodesicFEStiffness<GridView, LocalFiniteElement0, ATargetSpace0, LocalFiniteElement1, ATargetSpace1>* localEnergy_;
};
template <class GridView, class LocalFiniteElement0, class TargetSpace0, class LocalFiniteElement1, class TargetSpace1>
typename MixedLocalGFEADOLCStiffness<GridView, LocalFiniteElement0, TargetSpace0, LocalFiniteElement1, TargetSpace1>::RT
MixedLocalGFEADOLCStiffness<GridView, LocalFiniteElement0, TargetSpace0, LocalFiniteElement1, TargetSpace1>::
energy(const Entity& element,
const LocalFiniteElement0& localFiniteElement0,
const std::vector<TargetSpace0>& localConfiguration0,
const LocalFiniteElement1& localFiniteElement1,
const std::vector<TargetSpace1>& localConfiguration1) const
{
double pureEnergy;
std::vector<ATargetSpace0> localAConfiguration0(localConfiguration0.size());
std::vector<ATargetSpace1> localAConfiguration1(localConfiguration1.size());
trace_on(1);
adouble energy = 0;
// The following loop is not quite intuitive: we copy the localSolution into an
// array of FieldVector<double>, go from there to FieldVector<adouble> and
// only then to ATargetSpace.
// Rationale: The constructor/assignment-from-vector of TargetSpace frequently
// contains a projection onto the manifold from the surrounding Euclidean space.
// ADOL-C needs a function on the whole Euclidean space, hence that projection
// is part of the function and needs to be taped.
// The following variable cannot be declared inside of the loop, or ADOL-C will report wrong results
// (Presumably because several independent variables use the same memory location.)
std::vector<typename ATargetSpace0::CoordinateType> aRaw0(localConfiguration0.size());
for (size_t i=0; i<localConfiguration0.size(); i++) {
typename TargetSpace0::CoordinateType raw = localConfiguration0[i].globalCoordinates();
for (size_t j=0; j<raw.size(); j++)
aRaw0[i][j] <<= raw[j];
localAConfiguration0[i] = aRaw0[i]; // may contain a projection onto M -- needs to be done in adouble
}
std::vector<typename ATargetSpace1::CoordinateType> aRaw1(localConfiguration1.size());
for (size_t i=0; i<localConfiguration1.size(); i++) {
typename TargetSpace1::CoordinateType raw = localConfiguration1[i].globalCoordinates();
for (size_t j=0; j<raw.size(); j++)
aRaw1[i][j] <<= raw[j];
localAConfiguration1[i] = aRaw1[i]; // may contain a projection onto M -- needs to be done in adouble
}
energy = localEnergy_->energy(element,
localFiniteElement0,localAConfiguration0,
localFiniteElement1,localAConfiguration1);
energy >>= pureEnergy;
trace_off();
#if 0
size_t tape_stats[STAT_SIZE];
tapestats(1,tape_stats); // reading of tape statistics
cout<<"maxlive "<<tape_stats[NUM_MAX_LIVES]<<"\n";
cout<<"tay_stack_size "<<tape_stats[TAY_STACK_SIZE]<<"\n";
cout<<"total number of operations "<<tape_stats[NUM_OPERATIONS]<<"\n";
// ..... print other tape stats
#endif
return pureEnergy;
}
#if 0
template <class GridView, class LocalFiniteElement, class TargetSpace>
void LocalGeodesicFEADOLCStiffness<GridView, LocalFiniteElement, TargetSpace>::
assembleGradient(const Entity& element,
const LocalFiniteElement& localFiniteElement,
const std::vector<TargetSpace>& localSolution,
std::vector<typename TargetSpace::TangentVector>& localGradient) const
{
// Tape energy computation. We may not have to do this every time, but it's comparatively cheap.
energy(element, localFiniteElement, localSolution);
// Compute the actual gradient
size_t nDofs = localSolution.size();
size_t nDoubles = nDofs*embeddedBlocksize;
std::vector<double> xp(nDoubles);
int idx=0;
for (size_t i=0; i<nDofs; i++)
for (size_t j=0; j<embeddedBlocksize; j++)
xp[idx++] = localSolution[i].globalCoordinates()[j];
// Compute gradient
std::vector<double> g(nDoubles);
gradient(1,nDoubles,xp.data(),g.data()); // gradient evaluation
// Copy into Dune type
std::vector<typename TargetSpace::EmbeddedTangentVector> localEmbeddedGradient(localSolution.size());
idx=0;
for (size_t i=0; i<nDofs; i++)
for (size_t j=0; j<embeddedBlocksize; j++)
localEmbeddedGradient[i][j] = g[idx++];
// std::cout << "localEmbeddedGradient:\n";
// for (size_t i=0; i<nDofs; i++)
// std::cout << localEmbeddedGradient[i] << std::endl;
// Express gradient in local coordinate system
for (size_t i=0; i<nDofs; i++) {
Dune::FieldMatrix<RT,blocksize,embeddedBlocksize> orthonormalFrame = localSolution[i].orthonormalFrame();
orthonormalFrame.mv(localEmbeddedGradient[i],localGradient[i]);
}
}
#endif
// ///////////////////////////////////////////////////////////
// Compute gradient and Hessian together
// To compute the Hessian we need to compute the gradient anyway, so we may
// as well return it. This saves assembly time.
// ///////////////////////////////////////////////////////////
template <class GridType, class LocalFiniteElement0, class TargetSpace0, class LocalFiniteElement1, class TargetSpace1>
void MixedLocalGFEADOLCStiffness<GridType, LocalFiniteElement0, TargetSpace0, LocalFiniteElement1, TargetSpace1>::
assembleGradientAndHessian(const Entity& element,
const LocalFiniteElement0& localFiniteElement0,
const std::vector<TargetSpace0>& localConfiguration0,
const LocalFiniteElement1& localFiniteElement1,
const std::vector<TargetSpace1>& localConfiguration1,
std::vector<typename TargetSpace0::TangentVector>& localGradient0,
std::vector<typename TargetSpace1::TangentVector>& localGradient1)
{
// Tape energy computation. We may not have to do this every time, but it's comparatively cheap.
energy(element, localFiniteElement0, localConfiguration0, localFiniteElement1, localConfiguration1);
/////////////////////////////////////////////////////////////////
// Compute the gradient. It is needed to transform the Hessian
// into the correct coordinates.
/////////////////////////////////////////////////////////////////
// Compute the actual gradient
size_t nDofs0 = localConfiguration0.size();
size_t nDofs1 = localConfiguration1.size();
size_t nDoubles = nDofs0*embeddedBlocksize0 + nDofs1*embeddedBlocksize1;
std::vector<double> xp(nDoubles);
int idx=0;
for (size_t i=0; i<localConfiguration0.size(); i++)
for (size_t j=0; j<embeddedBlocksize0; j++)
xp[idx++] = localConfiguration0[i].globalCoordinates()[j];
for (size_t i=0; i<localConfiguration1.size(); i++)
for (size_t j=0; j<embeddedBlocksize1; j++)
xp[idx++] = localConfiguration1[i].globalCoordinates()[j];
// Compute gradient
std::vector<double> g(nDoubles);
gradient(1,nDoubles,xp.data(),g.data()); // gradient evaluation
// Copy into Dune type
std::vector<typename TargetSpace0::EmbeddedTangentVector> localEmbeddedGradient0(localConfiguration0.size());
std::vector<typename TargetSpace1::EmbeddedTangentVector> localEmbeddedGradient1(localConfiguration1.size());
idx=0;
for (size_t i=0; i<localConfiguration0.size(); i++) {
for (size_t j=0; j<embeddedBlocksize0; j++)
localEmbeddedGradient0[i][j] = g[idx++];
// Express gradient in local coordinate system
localConfiguration0[i].orthonormalFrame().mv(localEmbeddedGradient0[i],localGradient0[i]);
}
for (size_t i=0; i<localConfiguration1.size(); i++) {
for (size_t j=0; j<embeddedBlocksize1; j++)
localEmbeddedGradient1[i][j] = g[idx++];
// Express gradient in local coordinate system
localConfiguration1[i].orthonormalFrame().mv(localEmbeddedGradient1[i],localGradient1[i]);
}
/////////////////////////////////////////////////////////////////
// Compute Hessian
/////////////////////////////////////////////////////////////////
// We compute the Hessian of the energy functional using the ADOL-C system.
// Since ADOL-C does not know about nonlinear spaces, what we get is actually
// the Hessian of a prolongation of the energy functional into the surrounding
// Euclidean space. To obtain the Riemannian Hessian from this we apply the
// formula described in Absil, Mahoney, Trumpf, "An extrinsic look at the Riemannian Hessian".
// This formula consists of two steps:
// 1) Remove all entries of the Hessian pertaining to the normal space of the
// manifold. In the aforementioned paper this is done by projection onto the
// tangent space. Since we want a matrix that is really smaller (but full rank again),
// we can achieve the same effect by multiplying the embedded Hessian from the left
// and from the right by the matrix of orthonormal frames.
// 2) Add a correction involving the Weingarten map.
//
// This works, and is easy to implement using the ADOL-C "hessian" driver.
// However, here we implement a small shortcut. Computing the embedded Hessian and
// multiplying one side by the orthonormal frame is the same as evaluating the Hessian
// (seen as an operator from R^n to R^n) in the directions of the vectors of the
// orthonormal frame. By luck, ADOL-C can compute the evaluations of the Hessian in
// a given direction directly (in fact, this is also how the "hessian" driver works).
// Since there are less frame vectors than the dimension of the embedding space,
// this reinterpretation allows to reduce the number of calls to ADOL-C.
// In my Cosserat shell tests this reduced assembly time by about 10%.
std::vector<Dune::FieldMatrix<RT,blocksize0,embeddedBlocksize0> > orthonormalFrame0(nDofs0);
for (size_t i=0; i<nDofs0; i++)
orthonormalFrame0[i] = localConfiguration0[i].orthonormalFrame();
std::vector<Dune::FieldMatrix<RT,blocksize1,embeddedBlocksize1> > orthonormalFrame1(nDofs1);
for (size_t i=0; i<nDofs1; i++)
orthonormalFrame1[i] = localConfiguration1[i].orthonormalFrame();
Dune::Matrix<Dune::FieldMatrix<double,blocksize0, embeddedBlocksize0> > embeddedHessian00(nDofs0,nDofs0);
Dune::Matrix<Dune::FieldMatrix<double,blocksize0, embeddedBlocksize1> > embeddedHessian01(nDofs0,nDofs1);
Dune::Matrix<Dune::FieldMatrix<double,blocksize1, embeddedBlocksize0> > embeddedHessian10(nDofs1,nDofs0);
Dune::Matrix<Dune::FieldMatrix<double,blocksize1, embeddedBlocksize1> > embeddedHessian11(nDofs1,nDofs1);
#ifndef ADOLC_VECTOR_MODE
#error ADOL-C scalar mode not implemented
#if 0
std::vector<double> v(nDoubles);
std::vector<double> w(nDoubles);
std::fill(v.begin(), v.end(), 0.0);
for (int i=0; i<nDofs; i++)
for (int ii=0; ii<blocksize; ii++)
{
// Evaluate Hessian in the direction of each vector of the orthonormal frame
for (size_t k=0; k<embeddedBlocksize; k++)
v[i*embeddedBlocksize + k] = orthonormalFrame[i][ii][k];
int rc= 3;
MINDEC(rc, hess_vec(1, nDoubles, xp.data(), v.data(), w.data()));
if (rc < 0)
DUNE_THROW(Dune::Exception, "ADOL-C has returned with error code " << rc << "!");
for (int j=0; j<nDoubles; j++)
embeddedHessian[i][j/embeddedBlocksize][ii][j%embeddedBlocksize] = w[j];
// Make v the null vector again
std::fill(&v[i*embeddedBlocksize], &v[(i+1)*embeddedBlocksize], 0.0);
}
#endif
#else
int n = nDoubles;
int nDirections = nDofs0 * blocksize0 + nDofs1 * blocksize1;
double* tangent[nDoubles];
for(size_t i=0; i<nDoubles; i++)
tangent[i] = (double*)malloc(nDirections*sizeof(double));
double* rawHessian[nDoubles];
for(size_t i=0; i<nDoubles; i++)
rawHessian[i] = (double*)malloc(nDirections*sizeof(double));
// Initialize directions field with zeros
for (int j=0; j<nDirections; j++)
for (int i=0; i<n; i++)
tangent[i][j] = 0.0;
for (int j=0; j<nDofs0*blocksize0; j++)
for (int i=0; i<embeddedBlocksize0; i++)
tangent[(j/blocksize0)*embeddedBlocksize0+i][j] = orthonormalFrame0[j/blocksize0][j%blocksize0][i];
for (int j=0; j<nDofs1*blocksize1; j++)
for (int i=0; i<embeddedBlocksize1; i++)
tangent[nDofs0*embeddedBlocksize0 + (j/blocksize1)*embeddedBlocksize1+i][nDofs0*blocksize0 + j] = orthonormalFrame1[j/blocksize1][j%blocksize1][i];
hess_mat(1,nDoubles,nDirections,xp.data(),tangent,rawHessian);
// Copy Hessian into Dune data type
size_t offset0 = nDofs0*embeddedBlocksize0;
size_t offset1 = nDofs0*blocksize0;
// upper left block
for(size_t i=0; i<nDofs0*embeddedBlocksize0; i++)
for (size_t j=0; j<nDofs0*blocksize0; j++)
embeddedHessian00[j/blocksize0][i/embeddedBlocksize0][j%blocksize0][i%embeddedBlocksize0] = rawHessian[i][j];
// upper right block
for(size_t i=0; i<nDofs1*embeddedBlocksize1; i++)
for (size_t j=0; j<nDofs0*blocksize0; j++)
embeddedHessian01[j/blocksize0][i/embeddedBlocksize1][j%blocksize0][i%embeddedBlocksize1] = rawHessian[offset0+i][j];
// lower left block
for(size_t i=0; i<nDofs0*embeddedBlocksize0; i++)
for (size_t j=0; j<nDofs1*blocksize1; j++)
embeddedHessian10[j/blocksize1][i/embeddedBlocksize0][j%blocksize1][i%embeddedBlocksize0] = rawHessian[i][offset1+j];
// lower right block
for(size_t i=0; i<nDofs1*embeddedBlocksize1; i++)
for (size_t j=0; j<nDofs1*blocksize1; j++)
embeddedHessian11[j/blocksize1][i/embeddedBlocksize1][j%blocksize1][i%embeddedBlocksize1] = rawHessian[offset0+i][offset1+j];
for(size_t i=0; i<nDoubles; i++) {
free(rawHessian[i]);
free(tangent[i]);
}
#endif
// From this, compute the Hessian with respect to the manifold (which we assume here is embedded
// isometrically in a Euclidean space.
// For the detailed explanation of the following see: Absil, Mahoney, Trumpf, "An extrinsic look
// at the Riemannian Hessian".
this->A00_.setSize(nDofs0,nDofs0);
for (size_t col=0; col<nDofs0; col++) {
for (size_t subCol=0; subCol<blocksize0; subCol++) {
typename TargetSpace0::EmbeddedTangentVector z = orthonormalFrame0[col][subCol];
// P_x \partial^2 f z
for (size_t row=0; row<nDofs0; row++) {
typename TargetSpace0::TangentVector semiEmbeddedProduct;
embeddedHessian00[row][col].mv(z,semiEmbeddedProduct);
for (int subRow=0; subRow<blocksize0; subRow++)
this->A00_[row][col][subRow][subCol] = semiEmbeddedProduct[subRow];
}
}
}
this->A01_.setSize(nDofs0,nDofs1);
for (size_t col=0; col<nDofs1; col++) {
for (size_t subCol=0; subCol<blocksize1; subCol++) {
typename TargetSpace1::EmbeddedTangentVector z = orthonormalFrame1[col][subCol];
// P_x \partial^2 f z
for (size_t row=0; row<nDofs0; row++) {
typename TargetSpace0::TangentVector semiEmbeddedProduct;
embeddedHessian01[row][col].mv(z,semiEmbeddedProduct);
for (int subRow=0; subRow<blocksize0; subRow++)
this->A01_[row][col][subRow][subCol] = semiEmbeddedProduct[subRow];
}
}
}
this->A10_.setSize(nDofs1,nDofs0);
for (size_t col=0; col<nDofs0; col++) {
for (size_t subCol=0; subCol<blocksize0; subCol++) {
typename TargetSpace0::EmbeddedTangentVector z = orthonormalFrame0[col][subCol];
// P_x \partial^2 f z
for (size_t row=0; row<nDofs1; row++) {
typename TargetSpace1::TangentVector semiEmbeddedProduct;
embeddedHessian10[row][col].mv(z,semiEmbeddedProduct);
for (int subRow=0; subRow<blocksize1; subRow++)
this->A10_[row][col][subRow][subCol] = semiEmbeddedProduct[subRow];
}
}
}
this->A11_.setSize(nDofs1,nDofs1);
for (size_t col=0; col<nDofs1; col++) {
for (size_t subCol=0; subCol<blocksize1; subCol++) {
typename TargetSpace1::EmbeddedTangentVector z = orthonormalFrame1[col][subCol];
// P_x \partial^2 f z
for (size_t row=0; row<nDofs1; row++) {
typename TargetSpace1::TangentVector semiEmbeddedProduct;
embeddedHessian11[row][col].mv(z,semiEmbeddedProduct);
for (int subRow=0; subRow<blocksize1; subRow++)
this->A11_[row][col][subRow][subCol] = semiEmbeddedProduct[subRow];
}
}
}
//////////////////////////////////////////////////////////////////////////////////////
// Further correction due to non-planar configuration space
// + \mathfrak{A}_x(z,P^\orth_x \partial f)
//////////////////////////////////////////////////////////////////////////////////////
// Project embedded gradient onto normal space
std::vector<typename TargetSpace0::EmbeddedTangentVector> projectedGradient0(nDofs0);
for (size_t i=0; i<nDofs0; i++)
projectedGradient0[i] = localConfiguration0[i].projectOntoNormalSpace(localEmbeddedGradient0[i]);
std::vector<typename TargetSpace1::EmbeddedTangentVector> projectedGradient1(nDofs1);
for (size_t i=0; i<nDofs1; i++)
projectedGradient1[i] = localConfiguration1[i].projectOntoNormalSpace(localEmbeddedGradient1[i]);
// The Weingarten map has only diagonal entries
for (size_t row=0; row<nDofs0; row++) {
for (size_t subRow=0; subRow<blocksize0; subRow++) {
typename TargetSpace0::EmbeddedTangentVector z = orthonormalFrame0[row][subRow];
typename TargetSpace0::EmbeddedTangentVector tmp1 = localConfiguration0[row].weingarten(z,projectedGradient0[row]);
typename TargetSpace0::TangentVector tmp2;
orthonormalFrame0[row].mv(tmp1,tmp2);
this->A00_[row][row][subRow] += tmp2;
}
}
for (size_t row=0; row<nDofs1; row++) {
for (size_t subRow=0; subRow<blocksize1; subRow++) {
typename TargetSpace1::EmbeddedTangentVector z = orthonormalFrame1[row][subRow];
typename TargetSpace1::EmbeddedTangentVector tmp1 = localConfiguration1[row].weingarten(z,projectedGradient1[row]);
typename TargetSpace1::TangentVector tmp2;
orthonormalFrame1[row].mv(tmp1,tmp2);
this->A11_[row][row][subRow] += tmp2;
}
}
// std::cout << "ADOL-C stiffness:\n";
// printmatrix(std::cout, this->A_, "foo", "--");
}
#endif