Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
1e49289f
Commit
1e49289f
authored
15 years ago
by
Oliver Sander
Committed by
sander@PCPOOL.MI.FU-BERLIN.DE
15 years ago
Browse files
Options
Downloads
Patches
Plain Diff
The 2-harmonic energy
[[Imported from SVN: r4023]]
parent
10cce944
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/harmonicenergystiffness.hh
+662
-0
662 additions, 0 deletions
src/harmonicenergystiffness.hh
with
662 additions
and
0 deletions
src/harmonicenergystiffness.hh
0 → 100644
+
662
−
0
View file @
1e49289f
#ifndef HARMONIC_ENERGY_LOCAL_STIFFNESS_HH
#define HARMONIC_ENERGY_LOCAL_STIFFNESS_HH
#include
<dune/istl/bcrsmatrix.hh>
#include
<dune/common/fmatrix.hh>
#include
<dune/istl/matrixindexset.hh>
#include
<dune/istl/matrix.hh>
#include
<dune/disc/operators/localstiffness.hh>
template
<
class
GridView
,
class
TargetSpace
>
class
HarmonicEnergyLocalStiffness
:
public
Dune
::
LocalStiffness
<
GridView
,
TargetSpace
::
TangentVector
::
field_type
,
TargetSpace
::
TangentVector
::
size
>
{
// grid types
typedef
typename
GridView
::
Grid
::
ctype
DT
;
typedef
typename
GridView
::
template
Codim
<
0
>
::
Entity
Entity
;
typedef
typename
GridView
::
template
Codim
<
0
>
::
EntityPointer
EntityPointer
;
// some other sizes
enum
{
dim
=
GridView
::
dimension
};
// Quadrature order used for the extension and shear energy
enum
{
shearQuadOrder
=
2
};
// Quadrature order used for the bending and torsion energy
enum
{
bendingQuadOrder
=
2
};
public
:
//! Each block is x, y, theta in 2d, T (R^3 \times SO(3)) in 3d
enum
{
blocksize
=
6
};
// define the number of components of your system, this is used outside
// to allocate the correct size of (dense) blocks with a FieldMatrix
enum
{
m
=
blocksize
};
// types for matrics, vectors and boundary conditions
typedef
Dune
::
FieldMatrix
<
RT
,
m
,
m
>
MBlockType
;
// one entry in the stiffness matrix
typedef
Dune
::
FieldVector
<
RT
,
m
>
VBlockType
;
// one entry in the global vectors
typedef
Dune
::
array
<
Dune
::
BoundaryConditions
::
Flags
,
m
>
BCBlockType
;
// componentwise boundary conditions
//! Default Constructor
RodLocalStiffness
()
{}
//! Default Constructor
RodLocalStiffness
(
const
Dune
::
array
<
double
,
3
>&
K
,
const
Dune
::
array
<
double
,
3
>&
A
)
{
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
K_
[
i
]
=
K
[
i
];
A_
[
i
]
=
A
[
i
];
}
}
//! assemble local stiffness matrix for given element and order
/*! On exit the following things have been done:
- The stiffness matrix for the given entity and polynomial degree has been assembled and is
accessible with the mat() method.
- The boundary conditions have been evaluated and are accessible with the bc() method
- The right hand side has been assembled. It contains either the value of the essential boundary
condition or the assembled source term and neumann boundary condition. It is accessible via the rhs() method.
@param[in] e a codim 0 entity reference
\param[in] localSolution Current local solution, because this is a nonlinear assembler
@param[in] k order of Lagrange basis
*/
void
assemble
(
const
Entity
&
e
,
const
Dune
::
BlockVector
<
Dune
::
FieldVector
<
double
,
6
>
>&
localSolution
,
int
k
=
1
)
{
DUNE_THROW
(
Dune
::
NotImplemented
,
"!"
);
}
/** \todo Remove this once this methods is not in base class LocalStiffness anymore */
void
assemble
(
const
Entity
&
e
,
int
k
=
1
)
{
DUNE_THROW
(
Dune
::
NotImplemented
,
"!"
);
}
void
assembleBoundaryCondition
(
const
Entity
&
e
,
int
k
=
1
)
{
DUNE_THROW
(
Dune
::
NotImplemented
,
"!"
);
}
RT
energy
(
const
Entity
&
e
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
localSolution
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
localReferenceConfiguration
,
int
k
=
1
);
static
void
interpolationDerivative
(
const
Rotation
<
3
,
RT
>&
q0
,
const
Rotation
<
3
,
RT
>&
q1
,
double
s
,
Dune
::
array
<
Quaternion
<
double
>
,
6
>&
grad
);
static
void
interpolationVelocityDerivative
(
const
Rotation
<
3
,
RT
>&
q0
,
const
Rotation
<
3
,
RT
>&
q1
,
double
s
,
double
intervalLength
,
Dune
::
array
<
Quaternion
<
double
>
,
6
>&
grad
);
Dune
::
FieldVector
<
double
,
6
>
getStrain
(
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
localSolution
,
const
Entity
&
element
,
const
Dune
::
FieldVector
<
double
,
1
>&
pos
)
const
;
/** \brief Assemble the element gradient of the energy functional */
void
assembleGradient
(
const
Entity
&
element
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
solution
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
referenceConfiguration
,
Dune
::
array
<
Dune
::
FieldVector
<
double
,
6
>
,
2
>&
gradient
)
const
;
template
<
class
T
>
static
Dune
::
FieldVector
<
T
,
3
>
darboux
(
const
Rotation
<
3
,
T
>&
q
,
const
Dune
::
FieldVector
<
T
,
4
>&
q_s
)
{
Dune
::
FieldVector
<
double
,
3
>
u
;
// The Darboux vector
u
[
0
]
=
2
*
(
q
.
B
(
0
)
*
q_s
);
u
[
1
]
=
2
*
(
q
.
B
(
1
)
*
q_s
);
u
[
2
]
=
2
*
(
q
.
B
(
2
)
*
q_s
);
return
u
;
}
};
template
<
class
GridType
,
class
RT
>
RT
RodLocalStiffness
<
GridType
,
RT
>::
energy
(
const
Entity
&
element
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
localSolution
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
localReferenceConfiguration
,
int
k
)
{
RT
energy
=
0
;
// ///////////////////////////////////////////////////////////////////////////////
// The following two loops are a reduced integration scheme. We integrate
// the transverse shear and extensional energy with a first-order quadrature
// formula, even though it should be second order. This prevents shear-locking.
// ///////////////////////////////////////////////////////////////////////////////
const
Dune
::
QuadratureRule
<
double
,
1
>&
shearingQuad
=
Dune
::
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
shearQuadOrder
);
for
(
size_t
pt
=
0
;
pt
<
shearingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
double
,
1
>&
quadPos
=
shearingQuad
[
pt
].
position
();
const
double
integrationElement
=
element
.
geometry
().
integrationElement
(
quadPos
);
double
weight
=
shearingQuad
[
pt
].
weight
()
*
integrationElement
;
Dune
::
FieldVector
<
double
,
6
>
strain
=
getStrain
(
localSolution
,
element
,
quadPos
);
// The reference strain
Dune
::
FieldVector
<
double
,
6
>
referenceStrain
=
getStrain
(
localReferenceConfiguration
,
element
,
quadPos
);
for
(
int
i
=
0
;
i
<
3
;
i
++
)
energy
+=
weight
*
0.5
*
A_
[
i
]
*
(
strain
[
i
]
-
referenceStrain
[
i
])
*
(
strain
[
i
]
-
referenceStrain
[
i
]);
}
// Get quadrature rule
const
Dune
::
QuadratureRule
<
double
,
1
>&
bendingQuad
=
Dune
::
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
bendingQuadOrder
);
for
(
size_t
pt
=
0
;
pt
<
bendingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
Dune
::
FieldVector
<
double
,
1
>&
quadPos
=
bendingQuad
[
pt
].
position
();
double
weight
=
bendingQuad
[
pt
].
weight
()
*
element
.
geometry
().
integrationElement
(
quadPos
);
Dune
::
FieldVector
<
double
,
6
>
strain
=
getStrain
(
localSolution
,
element
,
quadPos
);
// The reference strain
Dune
::
FieldVector
<
double
,
6
>
referenceStrain
=
getStrain
(
localReferenceConfiguration
,
element
,
quadPos
);
// Part II: the bending and twisting energy
for
(
int
i
=
0
;
i
<
3
;
i
++
)
energy
+=
weight
*
0.5
*
K_
[
i
]
*
(
strain
[
i
+
3
]
-
referenceStrain
[
i
+
3
])
*
(
strain
[
i
+
3
]
-
referenceStrain
[
i
+
3
]);
}
return
energy
;
}
template
<
class
GridType
,
class
RT
>
void
RodLocalStiffness
<
GridType
,
RT
>::
interpolationDerivative
(
const
Rotation
<
3
,
RT
>&
q0
,
const
Rotation
<
3
,
RT
>&
q1
,
double
s
,
Dune
::
array
<
Quaternion
<
double
>
,
6
>&
grad
)
{
// Clear output array
for
(
int
i
=
0
;
i
<
6
;
i
++
)
grad
[
i
]
=
0
;
// The derivatives with respect to w^1
// Compute q_1^{-1}q_0
Rotation
<
3
,
RT
>
q1InvQ0
=
q1
;
q1InvQ0
.
invert
();
q1InvQ0
=
q1InvQ0
.
mult
(
q0
);
{
// Compute v = (1-s) \exp^{-1} ( q_1^{-1} q_0)
Dune
::
FieldVector
<
RT
,
3
>
v
=
Rotation
<
3
,
RT
>::
expInv
(
q1InvQ0
);
v
*=
(
1
-
s
);
Dune
::
FieldMatrix
<
RT
,
4
,
3
>
dExp_v
=
Rotation
<
3
,
RT
>::
Dexp
(
v
);
Dune
::
FieldMatrix
<
RT
,
3
,
4
>
dExpInv
=
Rotation
<
3
,
RT
>::
DexpInv
(
q1InvQ0
);
Dune
::
FieldMatrix
<
RT
,
4
,
4
>
mat
(
0
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
mat
[
i
][
j
]
+=
(
1
-
s
)
*
dExp_v
[
i
][
k
]
*
dExpInv
[
k
][
j
];
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
(
i
==
j
);
// dExp[j][i] at v=0
dw
=
q1InvQ0
.
mult
(
dw
);
mat
.
umv
(
dw
,
grad
[
i
]);
grad
[
i
]
=
q1
.
mult
(
grad
[
i
]);
}
}
// The derivatives with respect to w^1
// Compute q_0^{-1}
Rotation
<
3
,
RT
>
q0InvQ1
=
q0
;
q0InvQ1
.
invert
();
q0InvQ1
=
q0InvQ1
.
mult
(
q1
);
{
// Compute v = s \exp^{-1} ( q_0^{-1} q_1)
Dune
::
FieldVector
<
RT
,
3
>
v
=
Rotation
<
3
,
RT
>::
expInv
(
q0InvQ1
);
v
*=
s
;
Dune
::
FieldMatrix
<
RT
,
4
,
3
>
dExp_v
=
Rotation
<
3
,
RT
>::
Dexp
(
v
);
Dune
::
FieldMatrix
<
RT
,
3
,
4
>
dExpInv
=
Rotation
<
3
,
RT
>::
DexpInv
(
q0InvQ1
);
Dune
::
FieldMatrix
<
RT
,
4
,
4
>
mat
(
0
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
mat
[
i
][
j
]
+=
s
*
dExp_v
[
i
][
k
]
*
dExpInv
[
k
][
j
];
for
(
int
i
=
3
;
i
<
6
;
i
++
)
{
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
((
i
-
3
)
==
j
);
// dExp[j][i-3] at v=0
dw
=
q0InvQ1
.
mult
(
dw
);
mat
.
umv
(
dw
,
grad
[
i
]);
grad
[
i
]
=
q0
.
mult
(
grad
[
i
]);
}
}
}
template
<
class
GridType
,
class
RT
>
void
RodLocalStiffness
<
GridType
,
RT
>::
interpolationVelocityDerivative
(
const
Rotation
<
3
,
RT
>&
q0
,
const
Rotation
<
3
,
RT
>&
q1
,
double
s
,
double
intervalLength
,
Dune
::
array
<
Quaternion
<
double
>
,
6
>&
grad
)
{
// Clear output array
for
(
int
i
=
0
;
i
<
6
;
i
++
)
grad
[
i
]
=
0
;
// Compute q_0^{-1}
Rotation
<
3
,
RT
>
q0Inv
=
q0
;
q0Inv
.
invert
();
// Compute v = s \exp^{-1} ( q_0^{-1} q_1)
Dune
::
FieldVector
<
RT
,
3
>
v
=
Rotation
<
3
,
RT
>::
expInv
(
q0Inv
.
mult
(
q1
));
v
*=
s
/
intervalLength
;
Dune
::
FieldMatrix
<
RT
,
4
,
3
>
dExp_v
=
Rotation
<
3
,
RT
>::
Dexp
(
v
);
Dune
::
array
<
Dune
::
FieldMatrix
<
RT
,
3
,
3
>
,
4
>
ddExp
;
Rotation
<
3
,
RT
>::
DDexp
(
v
,
ddExp
);
Dune
::
FieldMatrix
<
RT
,
3
,
4
>
dExpInv
=
Rotation
<
3
,
RT
>::
DexpInv
(
q0Inv
.
mult
(
q1
));
Dune
::
FieldMatrix
<
RT
,
4
,
4
>
mat
(
0
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
for
(
int
j
=
0
;
j
<
4
;
j
++
)
for
(
int
k
=
0
;
k
<
3
;
k
++
)
mat
[
i
][
j
]
+=
1
/
intervalLength
*
dExp_v
[
i
][
k
]
*
dExpInv
[
k
][
j
];
// /////////////////////////////////////////////////
// The derivatives with respect to w^0
// /////////////////////////////////////////////////
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
// \partial exp \partial w^1_j at 0
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
(
i
==
j
);
// dExp_v_0[j][i];
// \xi = \exp^{-1} q_0^{-1} q_1
Dune
::
FieldVector
<
RT
,
3
>
xi
=
Rotation
<
3
,
RT
>::
expInv
(
q0Inv
.
mult
(
q1
));
Quaternion
<
RT
>
addend0
;
addend0
=
0
;
dExp_v
.
umv
(
xi
,
addend0
);
addend0
=
dw
.
mult
(
addend0
);
addend0
/=
intervalLength
;
// \parder{\xi}{w^1_j} = ...
Quaternion
<
RT
>
dwConj
=
dw
;
dwConj
.
conjugate
();
//dwConj[3] -= 2 * dExp_v_0[3][i]; the last row of dExp_v_0 is zero
dwConj
=
dwConj
.
mult
(
q0Inv
.
mult
(
q1
));
Dune
::
FieldVector
<
RT
,
3
>
dxi
(
0
);
Rotation
<
3
,
RT
>::
DexpInv
(
q0Inv
.
mult
(
q1
)).
umv
(
dwConj
,
dxi
);
Quaternion
<
RT
>
vHv
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
vHv
[
j
]
=
0
;
// vHv[j] = dxi * DDexp * xi
for
(
int
k
=
0
;
k
<
3
;
k
++
)
for
(
int
l
=
0
;
l
<
3
;
l
++
)
vHv
[
j
]
+=
ddExp
[
j
][
k
][
l
]
*
dxi
[
k
]
*
xi
[
l
];
}
vHv
*=
s
/
intervalLength
/
intervalLength
;
// Third addend
mat
.
umv
(
dwConj
,
grad
[
i
]);
// add up
grad
[
i
]
+=
addend0
;
grad
[
i
]
+=
vHv
;
grad
[
i
]
=
q0
.
mult
(
grad
[
i
]);
}
// /////////////////////////////////////////////////
// The derivatives with respect to w^1
// /////////////////////////////////////////////////
for
(
int
i
=
3
;
i
<
6
;
i
++
)
{
// \partial exp \partial w^1_j at 0
Quaternion
<
RT
>
dw
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dw
[
j
]
=
0.5
*
((
i
-
3
)
==
j
);
// dw[j] = dExp_v_0[j][i-3];
// \xi = \exp^{-1} q_0^{-1} q_1
Dune
::
FieldVector
<
RT
,
3
>
xi
=
Rotation
<
3
,
RT
>::
expInv
(
q0Inv
.
mult
(
q1
));
// \parder{\xi}{w^1_j} = ...
Dune
::
FieldVector
<
RT
,
3
>
dxi
(
0
);
dExpInv
.
umv
(
q0Inv
.
mult
(
q1
.
mult
(
dw
)),
dxi
);
Quaternion
<
RT
>
vHv
;
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
// vHv[j] = dxi * DDexp * xi
vHv
[
j
]
=
0
;
for
(
int
k
=
0
;
k
<
3
;
k
++
)
for
(
int
l
=
0
;
l
<
3
;
l
++
)
vHv
[
j
]
+=
ddExp
[
j
][
k
][
l
]
*
dxi
[
k
]
*
xi
[
l
];
}
vHv
*=
s
/
intervalLength
/
intervalLength
;
// ///////////////////////////////////
// second addend
// ///////////////////////////////////
dw
=
q0Inv
.
mult
(
q1
.
mult
(
dw
));
mat
.
umv
(
dw
,
grad
[
i
]);
grad
[
i
]
+=
vHv
;
grad
[
i
]
=
q0
.
mult
(
grad
[
i
]);
}
}
template
<
class
GridType
,
class
RT
>
Dune
::
FieldVector
<
double
,
6
>
RodLocalStiffness
<
GridType
,
RT
>::
getStrain
(
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
localSolution
,
const
Entity
&
element
,
const
Dune
::
FieldVector
<
double
,
1
>&
pos
)
const
{
if
(
!
element
.
isLeaf
())
DUNE_THROW
(
Dune
::
NotImplemented
,
"Only for leaf elements"
);
assert
(
localSolution
.
size
()
==
2
);
// Strain defined on each element
Dune
::
FieldVector
<
double
,
6
>
strain
(
0
);
// Extract local solution on this element
const
Dune
::
LagrangeShapeFunctionSet
<
double
,
double
,
1
>
&
baseSet
=
Dune
::
LagrangeShapeFunctions
<
double
,
double
,
1
>::
general
(
element
.
type
(),
1
);
int
numOfBaseFct
=
baseSet
.
size
();
const
Dune
::
FieldMatrix
<
double
,
1
,
1
>&
inv
=
element
.
geometry
().
jacobianInverseTransposed
(
pos
);
// ///////////////////////////////////////
// Compute deformation gradient
// ///////////////////////////////////////
Dune
::
FieldVector
<
double
,
1
>
shapeGrad
[
numOfBaseFct
];
for
(
int
dof
=
0
;
dof
<
numOfBaseFct
;
dof
++
)
{
for
(
int
i
=
0
;
i
<
1
;
i
++
)
shapeGrad
[
dof
][
i
]
=
baseSet
[
dof
].
evaluateDerivative
(
0
,
i
,
pos
);
// multiply with jacobian inverse
Dune
::
FieldVector
<
double
,
1
>
tmp
(
0
);
inv
.
umv
(
shapeGrad
[
dof
],
tmp
);
shapeGrad
[
dof
]
=
tmp
;
}
// //////////////////////////////////
// Interpolate
// //////////////////////////////////
Dune
::
FieldVector
<
double
,
3
>
r_s
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
r_s
[
i
]
=
localSolution
[
0
].
r
[
i
]
*
shapeGrad
[
0
][
0
]
+
localSolution
[
1
].
r
[
i
]
*
shapeGrad
[
1
][
0
];
// Interpolate the rotation at the quadrature point
Rotation
<
3
,
double
>
q
=
Rotation
<
3
,
double
>::
interpolate
(
localSolution
[
0
].
q
,
localSolution
[
1
].
q
,
pos
);
// Get the derivative of the rotation at the quadrature point by interpolating in $H$
Quaternion
<
double
>
q_s
=
Rotation
<
3
,
double
>::
interpolateDerivative
(
localSolution
[
0
].
q
,
localSolution
[
1
].
q
,
pos
);
// Transformation from the reference element
q_s
*=
inv
[
0
][
0
];
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
// Part I: the shearing and stretching strain
strain
[
0
]
=
r_s
*
q
.
director
(
0
);
// shear strain
strain
[
1
]
=
r_s
*
q
.
director
(
1
);
// shear strain
strain
[
2
]
=
r_s
*
q
.
director
(
2
);
// stretching strain
// Part II: the Darboux vector
Dune
::
FieldVector
<
double
,
3
>
u
=
darboux
(
q
,
q_s
);
strain
[
3
]
=
u
[
0
];
strain
[
4
]
=
u
[
1
];
strain
[
5
]
=
u
[
2
];
return
strain
;
}
template
<
class
GridType
,
class
RT
>
void
RodLocalStiffness
<
GridType
,
RT
>::
assembleGradient
(
const
Entity
&
element
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
solution
,
const
Dune
::
array
<
RigidBodyMotion
<
3
>
,
2
>&
referenceConfiguration
,
Dune
::
array
<
Dune
::
FieldVector
<
double
,
6
>
,
2
>&
gradient
)
const
{
using
namespace
Dune
;
// Extract local solution on this element
const
Dune
::
LagrangeShapeFunctionSet
<
double
,
double
,
1
>
&
baseSet
=
Dune
::
LagrangeShapeFunctions
<
double
,
double
,
1
>::
general
(
element
.
type
(),
1
);
// first order
const
int
numOfBaseFct
=
baseSet
.
size
();
// init
for
(
size_t
i
=
0
;
i
<
gradient
.
size
();
i
++
)
gradient
[
i
]
=
0
;
double
intervalLength
=
element
.
geometry
().
corner
(
1
)[
0
]
-
element
.
geometry
().
corner
(
0
)[
0
];
// ///////////////////////////////////////////////////////////////////////////////////
// Reduced integration to avoid locking: assembly is split into a shear part
// and a bending part. Different quadrature rules are used for the two parts.
// This avoids locking.
// ///////////////////////////////////////////////////////////////////////////////////
// Get quadrature rule
const
QuadratureRule
<
double
,
1
>&
shearingQuad
=
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
shearQuadOrder
);
for
(
int
pt
=
0
;
pt
<
shearingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
FieldVector
<
double
,
1
>&
quadPos
=
shearingQuad
[
pt
].
position
();
const
FieldMatrix
<
double
,
1
,
1
>&
inv
=
element
.
geometry
().
jacobianInverseTransposed
(
quadPos
);
const
double
integrationElement
=
element
.
geometry
().
integrationElement
(
quadPos
);
double
weight
=
shearingQuad
[
pt
].
weight
()
*
integrationElement
;
// ///////////////////////////////////////
// Compute deformation gradient
// ///////////////////////////////////////
double
shapeGrad
[
numOfBaseFct
];
for
(
int
dof
=
0
;
dof
<
numOfBaseFct
;
dof
++
)
{
shapeGrad
[
dof
]
=
baseSet
[
dof
].
evaluateDerivative
(
0
,
0
,
quadPos
);
// multiply with jacobian inverse
FieldVector
<
double
,
1
>
tmp
(
0
);
inv
.
umv
(
shapeGrad
[
dof
],
tmp
);
shapeGrad
[
dof
]
=
tmp
;
}
// //////////////////////////////////
// Interpolate
// //////////////////////////////////
FieldVector
<
double
,
3
>
r_s
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
r_s
[
i
]
=
solution
[
0
].
r
[
i
]
*
shapeGrad
[
0
]
+
solution
[
1
].
r
[
i
]
*
shapeGrad
[
1
];
// Interpolate current rotation at this quadrature point
Rotation
<
3
,
double
>
q
=
Rotation
<
3
,
double
>::
interpolate
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
[
0
]);
// The current strain
FieldVector
<
double
,
blocksize
>
strain
=
getStrain
(
solution
,
element
,
quadPos
);
// The reference strain
FieldVector
<
double
,
blocksize
>
referenceStrain
=
getStrain
(
referenceConfiguration
,
element
,
quadPos
);
// dd_dvij[m][i][j] = \parder {(d_k)_i} {q}
array
<
FieldMatrix
<
double
,
3
,
4
>
,
3
>
dd_dq
;
q
.
getFirstDerivativesOfDirectors
(
dd_dq
);
// First derivatives of the position
array
<
Quaternion
<
double
>
,
6
>
dq_dwij
;
interpolationDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
,
dq_dwij
);
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
for
(
int
i
=
0
;
i
<
numOfBaseFct
;
i
++
)
{
// /////////////////////////////////////////////
// The translational part
// /////////////////////////////////////////////
// \partial \bar{W} / \partial r^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
gradient
[
i
][
j
]
+=
weight
*
(
A_
[
m
]
*
(
strain
[
m
]
-
referenceStrain
[
m
])
*
shapeGrad
[
i
]
*
q
.
director
(
m
)[
j
]);
}
// \partial \bar{W}_v / \partial v^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
{
FieldVector
<
double
,
3
>
tmp
(
0
);
dd_dq
[
m
].
umv
(
dq_dwij
[
3
*
i
+
j
],
tmp
);
gradient
[
i
][
3
+
j
]
+=
weight
*
A_
[
m
]
*
(
strain
[
m
]
-
referenceStrain
[
m
])
*
(
r_s
*
tmp
);
}
}
}
}
// /////////////////////////////////////////////////////
// Now: the bending/torsion part
// /////////////////////////////////////////////////////
// Get quadrature rule
const
QuadratureRule
<
double
,
1
>&
bendingQuad
=
QuadratureRules
<
double
,
1
>::
rule
(
element
.
type
(),
bendingQuadOrder
);
for
(
int
pt
=
0
;
pt
<
bendingQuad
.
size
();
pt
++
)
{
// Local position of the quadrature point
const
FieldVector
<
double
,
1
>&
quadPos
=
bendingQuad
[
pt
].
position
();
const
FieldMatrix
<
double
,
1
,
1
>&
inv
=
element
.
geometry
().
jacobianInverseTransposed
(
quadPos
);
const
double
integrationElement
=
element
.
geometry
().
integrationElement
(
quadPos
);
double
weight
=
bendingQuad
[
pt
].
weight
()
*
integrationElement
;
// Interpolate current rotation at this quadrature point
Rotation
<
3
,
double
>
q
=
Rotation
<
3
,
double
>::
interpolate
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
[
0
]);
// Get the derivative of the rotation at the quadrature point by interpolating in $H$
Quaternion
<
double
>
q_s
=
Rotation
<
3
,
double
>::
interpolateDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
);
// Transformation from the reference element
q_s
*=
inv
[
0
][
0
];
// The current strain
FieldVector
<
double
,
blocksize
>
strain
=
getStrain
(
solution
,
element
,
quadPos
);
// The reference strain
FieldVector
<
double
,
blocksize
>
referenceStrain
=
getStrain
(
referenceConfiguration
,
element
,
quadPos
);
// First derivatives of the position
array
<
Quaternion
<
double
>
,
6
>
dq_dwij
;
interpolationDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
,
dq_dwij
);
array
<
Quaternion
<
double
>
,
6
>
dq_ds_dwij
;
interpolationVelocityDerivative
(
solution
[
0
].
q
,
solution
[
1
].
q
,
quadPos
[
0
]
*
intervalLength
,
intervalLength
,
dq_ds_dwij
);
// /////////////////////////////////////////////
// Sum it all up
// /////////////////////////////////////////////
for
(
int
i
=
0
;
i
<
numOfBaseFct
;
i
++
)
{
// /////////////////////////////////////////////
// The rotational part
// /////////////////////////////////////////////
// \partial \bar{W}_v / \partial v^i_j
for
(
int
j
=
0
;
j
<
3
;
j
++
)
{
for
(
int
m
=
0
;
m
<
3
;
m
++
)
{
// Compute derivative of the strain
/** \todo Is this formula correct? It seems strange to call
B(m) for a _derivative_ of a rotation */
double
du_dvij_m
=
2
*
(
dq_dwij
[
i
*
3
+
j
].
B
(
m
)
*
q_s
)
+
2
*
(
q
.
B
(
m
)
*
dq_ds_dwij
[
i
*
3
+
j
]);
// Sum it up
gradient
[
i
][
3
+
j
]
+=
weight
*
K_
[
m
]
*
(
strain
[
m
+
3
]
-
referenceStrain
[
m
+
3
])
*
du_dvij_m
;
}
}
}
}
}
#endif
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment