Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
214572e4
Commit
214572e4
authored
13 years ago
by
Oliver Sander
Committed by
sander@FU-BERLIN.DE
13 years ago
Browse files
Options
Downloads
Patches
Plain Diff
implement all the methods that are necessary to use this with the general gfe infrastructure
[[Imported from SVN: r7314]]
parent
5e3ae807
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dune/gfe/rotation.hh
+131
-1
131 additions, 1 deletion
dune/gfe/rotation.hh
with
131 additions
and
1 deletion
dune/gfe/rotation.hh
+
131
−
1
View file @
214572e4
...
...
@@ -11,6 +11,8 @@
#include
<dune/common/exceptions.hh>
#include
"quaternion.hh"
#include
<dune/gfe/tensor3.hh>
#include
<dune/gfe/unitvector.hh>
template
<
int
dim
,
class
T
>
...
...
@@ -145,8 +147,14 @@ public:
typedef
T
ctype
;
/** \brief Global coordinates wrt an isometric embedding function are available */
static
const
bool
globalIsometricCoordinates
=
fals
e
;
static
const
bool
globalIsometricCoordinates
=
tru
e
;
/** \brief The type used for global coordinates */
typedef
Dune
::
FieldVector
<
double
,
4
>
CoordinateType
;
/** \brief Dimension of the manifold formed by the 3d rotations */
static
const
int
dim
=
3
;
/** \brief Member of the corresponding Lie algebra. This really is a skew-symmetric matrix */
typedef
Dune
::
FieldVector
<
T
,
3
>
TangentVector
;
...
...
@@ -157,7 +165,21 @@ public:
Rotation
()
:
Quaternion
<
T
>
(
0
,
0
,
0
,
1
)
{}
Rotation
<
3
,
T
>
(
const
Dune
::
array
<
T
,
4
>&
c
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
(
*
this
)[
i
]
=
c
[
i
];
*
this
/=
this
->
two_norm
();
}
Rotation
<
3
,
T
>
(
const
Dune
::
FieldVector
<
T
,
4
>&
c
)
:
Quaternion
<
T
>
(
c
)
{
*
this
/=
this
->
two_norm
();
}
Rotation
<
3
,
T
>
(
Dune
::
FieldVector
<
T
,
3
>
axis
,
T
angle
)
:
Quaternion
<
T
>
(
axis
,
angle
)
{}
...
...
@@ -263,6 +285,27 @@ public:
return
exp
(
p
,
vMatrix
);
}
static
Rotation
<
3
,
T
>
exp
(
const
Rotation
<
3
,
T
>&
p
,
const
Dune
::
FieldVector
<
T
,
4
>&
v
)
{
assert
(
std
::
fabs
(
p
*
v
)
<
1e-8
);
// The vector v as a quaternion
Quaternion
<
T
>
vQuat
(
v
);
// left multiplication by the inverse base point yields a tangent vector at the identity
Quaternion
<
T
>
vAtIdentity
=
p
.
inverse
().
mult
(
vQuat
);
assert
(
std
::
fabs
(
vAtIdentity
[
3
])
<
1e-8
);
// vAtIdentity as a skew matrix
TangentVector
vMatrix
;
vMatrix
[
0
]
=
2
*
vAtIdentity
[
0
];
vMatrix
[
1
]
=
2
*
vAtIdentity
[
1
];
vMatrix
[
2
]
=
2
*
vAtIdentity
[
2
];
// The actual exponential map
return
exp
(
p
,
vMatrix
);
}
static
Dune
::
FieldMatrix
<
T
,
4
,
3
>
Dexp
(
const
Dune
::
FieldVector
<
T
,
3
>&
v
)
{
Dune
::
FieldMatrix
<
T
,
4
,
3
>
result
(
0
);
...
...
@@ -450,6 +493,69 @@ public:
return
projectedResult
;
}
/** \brief Compute the Hessian of the squared distance function keeping the first argument fixed
Unlike the distance itself the squared distance is differentiable at zero
*/
static
Dune
::
FieldMatrix
<
double
,
4
,
4
>
secondDerivativeOfDistanceSquaredWRTSecondArgument
(
const
Rotation
<
3
,
T
>&
p
,
const
Rotation
<
3
,
T
>&
q
)
{
// use the functionality from the unitvector class
Dune
::
FieldMatrix
<
double
,
4
,
4
>
result
=
UnitVector
<
4
>::
secondDerivativeOfDistanceSquaredWRTSecondArgument
(
p
.
globalCoordinates
(),
q
.
globalCoordinates
());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result
*=
4
;
return
result
;
}
/** \brief Compute the mixed second derivate \partial d^2 / \partial da db
Unlike the distance itself the squared distance is differentiable at zero
*/
static
Dune
::
FieldMatrix
<
double
,
4
,
4
>
secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument
(
const
Rotation
<
3
,
T
>&
p
,
const
Rotation
<
3
,
T
>&
q
)
{
// use the functionality from the unitvector class
Dune
::
FieldMatrix
<
double
,
4
,
4
>
result
=
UnitVector
<
4
>::
secondDerivativeOfDistanceSquaredWRTFirstAndSecondArgument
(
p
.
globalCoordinates
(),
q
.
globalCoordinates
());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result
*=
4
;
return
result
;
}
/** \brief Compute the third derivative \partial d^3 / \partial dq^3
Unlike the distance itself the squared distance is differentiable at zero
*/
static
Tensor3
<
double
,
4
,
4
,
4
>
thirdDerivativeOfDistanceSquaredWRTSecondArgument
(
const
Rotation
<
3
,
T
>&
p
,
const
Rotation
<
3
,
T
>&
q
)
{
// use the functionality from the unitvector class
Tensor3
<
double
,
4
,
4
,
4
>
result
=
UnitVector
<
4
>::
thirdDerivativeOfDistanceSquaredWRTSecondArgument
(
p
.
globalCoordinates
(),
q
.
globalCoordinates
());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result
*=
4
;
return
result
;
}
/** \brief Compute the mixed third derivative \partial d^3 / \partial da db^2
Unlike the distance itself the squared distance is differentiable at zero
*/
static
Tensor3
<
double
,
4
,
4
,
4
>
thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument
(
const
Rotation
<
3
,
T
>&
p
,
const
Rotation
<
3
,
T
>&
q
)
{
// use the functionality from the unitvector class
Tensor3
<
double
,
4
,
4
,
4
>
result
=
UnitVector
<
4
>::
thirdDerivativeOfDistanceSquaredWRTFirst1AndSecond2Argument
(
p
.
globalCoordinates
(),
q
.
globalCoordinates
());
// for some reason that I don't really understand, the distance we have defined for the rotations (== Unit quaternions)
// is twice the corresponding distance on the unit quaternions seen as a sphere. Hence the derivative of the
// squared distance needs to be multiplied by 4.
result
*=
4
;
return
result
;
}
/** \brief Interpolate between two rotations */
static
Rotation
<
3
,
T
>
interpolate
(
const
Rotation
<
3
,
T
>&
a
,
const
Rotation
<
3
,
T
>&
b
,
double
omega
)
{
...
...
@@ -607,6 +713,30 @@ public:
return
r
;
}
/** \brief Project tangent vector of R^n onto the tangent space */
EmbeddedTangentVector
projectOntoTangentSpace
(
const
EmbeddedTangentVector
&
v
)
const
{
EmbeddedTangentVector
result
=
v
;
EmbeddedTangentVector
data
=
*
this
;
result
.
axpy
(
-
1
*
(
data
*
result
),
data
);
return
result
;
}
/** \brief The global coordinates, if you really want them */
const
CoordinateType
&
globalCoordinates
()
const
{
return
*
this
;
}
/** \brief Compute an orthonormal basis of the tangent space of S^n.
This basis is of course not globally continuous.
*/
Dune
::
FieldMatrix
<
double
,
3
,
4
>
orthonormalFrame
()
const
{
Dune
::
FieldMatrix
<
double
,
3
,
4
>
result
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
result
[
i
]
=
B
(
i
);
return
result
;
}
};
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment