Skip to content
Snippets Groups Projects
Commit 5c1ceace authored by Oliver Sander's avatar Oliver Sander Committed by sander
Browse files

use the monotone multigrid solver now

[[Imported from SVN: r481]]
parent 6da41f3c
No related branches found
No related tags found
No related merge requests found
......@@ -15,18 +15,19 @@
//#include "../common/linearipopt.hh"
#include "../common/projectedblockgsstep.hh"
#include "../contact/src/contactmmgstep.hh"
#include <dune/solver/iterativesolver.hh>
#include "../common/geomestimator.hh"
#include "../common/energynorm.hh"
#include <dune/common/configparser.hh>
#include "src/rodwriter.hh"
// Choose a solver
//#define IPOPT
#define GAUSS_SEIDEL
//#define MULTIGRID
//#define IPOPT_BASE
//#define GAUSS_SEIDEL
#define MULTIGRID
// Number of degrees of freedom:
// 3 (x, y, theta) for a planar rod
......@@ -46,7 +47,6 @@ int main (int argc, char *argv[]) try
parameterSet.parseFile("staticrod.parset");
// read solver settings
const int minLevel = parameterSet.get("minLevel", int(0));
const int maxLevel = parameterSet.get("maxLevel", int(0));
double loadIncrement = parameterSet.get("loadIncrement", double(0));
const int maxNewtonSteps = parameterSet.get("maxNewtonSteps", int(0));
......@@ -59,42 +59,35 @@ int main (int argc, char *argv[]) try
const double baseTolerance = parameterSet.get("baseTolerance", double(0));
// Problem settings
const int numRodElements = parameterSet.get("numRodElements", int(0));
const int numRodBaseElements = parameterSet.get("numRodBaseElements", int(0));
// ///////////////////////////////////////
// Create the two grids
// ///////////////////////////////////////
typedef OneDGrid<1,1> RodGridType;
RodGridType rod(numRodElements, 0, 1);
Array<BitField> dirichletNodes;
dirichletNodes.resize(maxLevel+1);
dirichletNodes[0].resize( blocksize * (numRodElements+1) );
dirichletNodes[0].unsetAll();
dirichletNodes[0][0] = dirichletNodes[0][1] = dirichletNodes[0][2] = true;
dirichletNodes[0][blocksize*numRodElements+0] = true;
dirichletNodes[0][blocksize*numRodElements+1] = true;
dirichletNodes[0][blocksize*numRodElements+2] = true;
RodGridType rod(numRodBaseElements, 0, 1);
// refine uniformly until minlevel
for (int i=0; i<minLevel; i++)
// refine uniformly until maxLevel
for (int i=0; i<maxLevel; i++)
rod.globalRefine(1);
int maxlevel = rod.maxlevel();
int numRodElements = rod.size(maxlevel, 0);
// //////////////////////////////////////////////////////////
// Create obstacles
// //////////////////////////////////////////////////////////
Array<BitField> dirichletNodes;
dirichletNodes.resize(maxLevel+1);
for (int i=0; i<=maxlevel; i++) {
Array<BitField> hasObstacle;
hasObstacle.resize(maxLevel+1);
hasObstacle[0].resize(numRodElements+1);
hasObstacle[0].unsetAll();
dirichletNodes[i].resize( blocksize * rod.size(i,1) );
dirichletNodes[i].unsetAll();
for (int j=0; j<blocksize; j++) {
dirichletNodes[i][j] = true;
dirichletNodes[i][dirichletNodes[i].size()-1-j] = true;
}
}
// //////////////////////////////////////////////////////////
// Create discrete function spaces
......@@ -122,6 +115,13 @@ int main (int argc, char *argv[]) try
VectorType corr;
MatrixType hessianMatrix;
RodAssembler<RodFuncSpaceType, 2> rodAssembler(*rodFuncSpace[maxlevel]);
rodAssembler.setParameters(1, 10, 10);
MatrixIndexSet indices(numRodElements+1, numRodElements+1);
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessianMatrix);
rhs.resize(rodFuncSpace[maxlevel]->size());
x.resize(rodFuncSpace[maxlevel]->size());
......@@ -136,21 +136,32 @@ int main (int argc, char *argv[]) try
x[i][2] = M_PI/2;
}
x[0][1] = x[numRodElements][1] = 1;
x[0][0] = x[numRodElements][0] = 0;
x[0][1] = x[numRodElements][1] = 0;
RodAssembler<RodFuncSpaceType,2> test(*rodFuncSpace[0]);
test.assembleGradient(x, rhs);
//std::cout << "Solution: " << std::endl << x << std::endl;
//std::cout << "Gradient: " << std::endl << rhs << std::endl;
std::cout << "Energy: " << test.computeEnergy(x) << std::endl;
x[0][2] = 0;
x[numRodElements][2] = 2*M_PI;
MatrixIndexSet indices(numRodElements+1, numRodElements+1);
test.getNeighborsPerVertex(indices);
indices.exportIdx(hessianMatrix);
test.assembleMatrix(x,hessianMatrix);
// //////////////////////////////////////////////////////////
// Create obstacles
// //////////////////////////////////////////////////////////
Array<BitField> hasObstacle;
hasObstacle.resize(maxLevel+1);
for (int i=0; i<hasObstacle.size(); i++) {
hasObstacle[i].resize(rod.size(i, 1));
hasObstacle[i].setAll();
}
Array<SimpleVector<BoxConstraint<3> > > obstacles(maxlevel+1);
for (int i=0; i<obstacles.size(); i++)
obstacles[i].resize(rod.size(i,1));
//printmatrix(std::cout, hessianMatrix, "hessianMatrix", "--");
//exit(0);
for (int i=0; i<obstacles[maxlevel].size(); i++) {
obstacles[maxlevel][i].clear();
obstacles[maxlevel][i].val[1] = 0.1 - x[i][0];
}
// Create a solver
#if defined IPOPT
......@@ -169,62 +180,56 @@ int main (int argc, char *argv[]) try
SmootherType projectedBlockGSStep(hessianMatrix, corr, rhs);
projectedBlockGSStep.dirichletNodes_ = &dirichletNodes[maxlevel];
projectedBlockGSStep.hasObstacle_ = &hasObstacle[maxlevel];
projectedBlockGSStep.obstacles_ = NULL;//&contactAssembler.obstacles_[maxlevel];
projectedBlockGSStep.obstacles_ = &obstacles;
EnergyNorm<MatrixType, VectorType> energyNorm(projectedBlockGSStep);
IterativeSolver<MatrixType, VectorType> solver;
solver.iterationStep = &projectedBlockGSStep;
solver.numIt = numIt;
solver.verbosity_ = Solver::QUIET;
solver.verbosity_ = Solver::FULL;
solver.errorNorm_ = &energyNorm;
solver.tolerance_ = tolerance;
#elif defined MULTIGRID
// First create a base solver
#ifdef IPOPT_BASE
LinearIPOptSolver<BlockVector<FieldVector<double,dim> > > baseSolver;
baseSolver.verbosity_ = Solver::FULL;
// First create a gauss-seidel base solver
ProjectedBlockGSStep<MatrixType, VectorType> baseSolverStep;
#else // Gauss-Seidel is the base solver
EnergyNorm<MatrixType, VectorType> baseEnergyNorm(baseSolverStep);
ProjectedBlockGSStep<MatrixType, BlockVector<FieldVector<double,dim> > > baseSolverStep;
EnergyNorm<MatrixType, BlockVector<FieldVector<double,dim> > > baseEnergyNorm(baseSolverStep);
IterativeSolver<MatrixType, BlockVector<FieldVector<double,dim> > > baseSolver;
IterativeSolver<MatrixType, VectorType> baseSolver;
baseSolver.iterationStep = &baseSolverStep;
baseSolver.numIt = baseIt;
baseSolver.verbosity_ = Solver::QUIET;
baseSolver.errorNorm_ = &baseEnergyNorm;
baseSolver.tolerance_ = baseTolerance;
#endif
// Make pre and postsmoothers
ProjectedBlockGSStep<MatrixType, BlockVector<FieldVector<double,dim> > > presmoother;
ProjectedBlockGSStep<MatrixType, BlockVector<FieldVector<double,dim> > > postsmoother;
ProjectedBlockGSStep<MatrixType, VectorType> presmoother;
ProjectedBlockGSStep<MatrixType, VectorType> postsmoother;
ContactMMGStep<MatrixType, BlockVector<FieldVector<double,dim> > , FuncSpaceType > contactMMGStep(maxlevel+1);
ContactMMGStep<MatrixType, VectorType, RodFuncSpaceType > contactMMGStep(maxlevel+1);
contactMMGStep.setMGType(1, nu1, nu2);
contactMMGStep.dirichletNodes_ = &totalDirichletNodes;
contactMMGStep.setMGType(mu, nu1, nu2);
contactMMGStep.dirichletNodes_ = &dirichletNodes;
contactMMGStep.basesolver_ = &baseSolver;
contactMMGStep.presmoother_ = &presmoother;
contactMMGStep.postsmoother_ = &postsmoother;
contactMMGStep.hasObstacle_ = &hasObstacle;
contactMMGStep.obstacles_ = &contactAssembler.obstacles_;
contactMMGStep.obstacles_ = &obstacles;
// Create the transfer operators
contactMMGStep.mgTransfer_.resize(maxlevel);
for (int i=0; i<contactMMGStep.mgTransfer_.size(); i++)
contactMMGStep.mgTransfer_[i] = NULL;
for (int i=0; i<contactMMGStep.mgTransfer_.size(); i++){
TruncatedMGTransfer<VectorType>* newTransferOp = new TruncatedMGTransfer<VectorType>;
newTransferOp->setup(*rodFuncSpace[i], *rodFuncSpace[i+1]);
contactMMGStep.mgTransfer_[i] = newTransferOp;
}
EnergyNorm<MatrixType, VectorType> energyNorm(contactMMGStep);
IterativeSolver<MatrixType, BlockVector<FieldVector<double,dim> > > solver;
IterativeSolver<MatrixType, VectorType> solver;
solver.iterationStep = &contactMMGStep;
solver.numIt = numIt;
solver.verbosity_ = Solver::FULL;
......@@ -242,8 +247,6 @@ int main (int argc, char *argv[]) try
do {
RodAssembler<RodFuncSpaceType, 1> rodAssembler(*rodFuncSpace[maxlevel]);
loadFactor += loadIncrement;
std::cout << "####################################################" << std::endl;
......@@ -257,15 +260,20 @@ int main (int argc, char *argv[]) try
for (int j=0; j<maxNewtonSteps; j++) {
std::cout << "----------------------------------------------------" << std::endl;
std::cout << " Newton Step Number: " << j << std::endl;
std::cout << "----------------------------------------------------" << std::endl;
rhs = 0;
corr = 0;
//std::cout <<"Solution: " << x << std::endl;
rodAssembler.assembleGradient(x, rhs);
rodAssembler.assembleMatrix(x, hessianMatrix);
rhs *= -1;
std::cout << "rhs: " << std::endl << rhs << std::endl;
//std::cout << "rhs: " << std::endl << rhs << std::endl;
#ifndef IPOPT
solver.iterationStep->setProblem(hessianMatrix, corr, rhs);
......@@ -285,10 +293,10 @@ int main (int argc, char *argv[]) try
solver.solve();
#ifdef MULTIGRID
totalCorr = contactMMGStep.getSol();
corr = contactMMGStep.getSol();
#endif
std::cout << "Correction: \n" << corr << std::endl;
//std::cout << "Correction: \n" << corr << std::endl;
// line search
printf("------ Line Search ---------\n");
......@@ -317,17 +325,33 @@ int main (int argc, char *argv[]) try
x.axpy(smallestFactor, corr);
// Output result
std::cout << "Solution:" << std::endl << x << std::endl;
//std::cout << "Solution:" << std::endl << x << std::endl;
printf("infinity norm of the correction: %g\n", corr[0].infinity_norm());
if (corr.infinity_norm() < 1e-8)
printf("infinity norm of the correction: %g\n", smallestFactor*corr.infinity_norm());
if (smallestFactor*corr.infinity_norm() < 1e-8)
break;
// Subtract correction from the current obstacle
for (int k=0; k<corr.size(); k++) {
FieldVector<double, blocksize> tmp = corr[k];
tmp *= smallestFactor;
obstacles[maxlevel][k] -= tmp;
}
}
} while (loadFactor < 1);
// Write result grid
writeRod(x, "rod.result");
// Write Lagrange multiplyers
std::ofstream lagrangeFile("lagrange");
VectorType lagrangeMultipliers;
rodAssembler.assembleGradient(x, lagrangeMultipliers);
lagrangeFile << lagrangeMultipliers << std::endl;
} catch (Exception e) {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment