Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
85cb77bd
Commit
85cb77bd
authored
3 years ago
by
Sander, Oliver
Browse files
Options
Downloads
Patches
Plain Diff
Modernize target space finite difference testing
parent
06a9cb0d
Branches
Branches containing commit
No related tags found
1 merge request
!93
Enable more tests for the various TargetSpace classes
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
test/targetspacetest.cc
+32
-45
32 additions, 45 deletions
test/targetspacetest.cc
with
32 additions
and
45 deletions
test/targetspacetest.cc
+
32
−
45
View file @
85cb77bd
...
...
@@ -29,23 +29,17 @@ double diameter(const std::vector<TargetSpace>& v)
const
double
eps
=
1e-4
;
template
<
class
TargetSpace
>
double
energy
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
double
distanceSquared
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
{
return
TargetSpace
::
distance
(
a
,
b
)
*
TargetSpace
::
distance
(
a
,
b
);
return
Dune
::
power
(
TargetSpace
::
distance
(
a
,
b
)
,
2
)
;
}
// Squared distance between two points slightly off the manifold.
// This is required for finite difference approximations.
template
<
class
TargetSpace
,
int
dim
>
double
energy
(
const
TargetSpace
&
a
,
const
FieldVector
<
double
,
dim
>&
b
)
double
distanceSquared
(
const
FieldVector
<
double
,
dim
>
&
a
,
const
FieldVector
<
double
,
dim
>&
b
)
{
#warning Cast where there should not be one
return
TargetSpace
::
distance
(
a
,
TargetSpace
(
b
))
*
TargetSpace
::
distance
(
a
,
TargetSpace
(
b
));
}
template
<
class
TargetSpace
,
int
dim
>
double
energy
(
const
FieldVector
<
double
,
dim
>&
a
,
const
FieldVector
<
double
,
dim
>&
b
)
{
#warning Cast where there should not be one
return
TargetSpace
::
distance
(
TargetSpace
(
a
),
TargetSpace
(
b
))
*
TargetSpace
::
distance
(
TargetSpace
(
a
),
TargetSpace
(
b
));
return
Dune
::
power
(
TargetSpace
::
distance
(
TargetSpace
(
a
),
TargetSpace
(
b
)),
2
);
}
/** \brief Compute the Riemannian Hessian of the squared distance function in global coordinates
...
...
@@ -67,15 +61,15 @@ FieldMatrix<double,worldDim,worldDim> getSecondDerivativeOfSecondArgumentFD(cons
for
(
size_t
i
=
0
;
i
<
spaceDim
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
spaceDim
;
j
++
)
{
FieldVector
<
double
,
worldDim
>
epsXi
=
B
[
i
];
epsXi
*=
eps
;
FieldVector
<
double
,
worldDim
>
epsEta
=
B
[
j
];
epsEta
*=
eps
;
FieldVector
<
double
,
worldDim
>
epsXi
=
eps
*
B
[
i
]
;
FieldVector
<
double
,
worldDim
>
epsEta
=
eps
*
B
[
j
]
;
FieldVector
<
double
,
worldDim
>
minusEpsXi
=
epsXi
;
minusEpsXi
*=
-
1
;
FieldVector
<
double
,
worldDim
>
minusEpsEta
=
epsEta
;
minusEpsEta
*=
-
1
;
FieldVector
<
double
,
worldDim
>
minusEpsXi
=
-
1
*
epsXi
;
FieldVector
<
double
,
worldDim
>
minusEpsEta
=
-
1
*
epsEta
;
double
forwardValue
=
energy
(
a
,
TargetSpace
::
exp
(
b
,
epsXi
+
epsEta
))
-
energy
(
a
,
TargetSpace
::
exp
(
b
,
epsXi
))
-
energy
(
a
,
TargetSpace
::
exp
(
b
,
epsEta
));
double
centerValue
=
energy
(
a
,
b
)
-
energy
(
a
,
b
)
-
energy
(
a
,
b
);
double
backwardValue
=
energy
(
a
,
TargetSpace
::
exp
(
b
,
minusEpsXi
+
minusEpsEta
))
-
energy
(
a
,
TargetSpace
::
exp
(
b
,
minusEpsXi
))
-
energy
(
a
,
TargetSpace
::
exp
(
b
,
minusEpsEta
));
double
forwardValue
=
distanceSquared
(
a
,
TargetSpace
::
exp
(
b
,
epsXi
+
epsEta
))
-
distanceSquared
(
a
,
TargetSpace
::
exp
(
b
,
epsXi
))
-
distanceSquared
(
a
,
TargetSpace
::
exp
(
b
,
epsEta
));
double
centerValue
=
distanceSquared
(
a
,
b
)
-
distanceSquared
(
a
,
b
)
-
distanceSquared
(
a
,
b
);
double
backwardValue
=
distanceSquared
(
a
,
TargetSpace
::
exp
(
b
,
minusEpsXi
+
minusEpsEta
))
-
distanceSquared
(
a
,
TargetSpace
::
exp
(
b
,
minusEpsXi
))
-
distanceSquared
(
a
,
TargetSpace
::
exp
(
b
,
minusEpsEta
));
d2d2_fd
[
i
][
j
]
=
0.5
*
(
forwardValue
-
2
*
centerValue
+
backwardValue
)
/
(
eps
*
eps
);
...
...
@@ -111,7 +105,7 @@ void testOrthonormalFrame(const TargetSpace& a)
}
template
<
class
TargetSpace
>
void
testDerivativeOf
Squared
Distance
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
void
testDerivativeOfDistance
Squared
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
{
static
const
size_t
embeddedDim
=
TargetSpace
::
embeddedDim
;
...
...
@@ -126,14 +120,12 @@ void testDerivativeOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
typename
TargetSpace
::
TangentVector
d2_fd
;
for
(
size_t
i
=
0
;
i
<
TargetSpace
::
TangentVector
::
dimension
;
i
++
)
{
typename
TargetSpace
::
EmbeddedTangentVector
fwVariation
=
B
[
i
];
typename
TargetSpace
::
EmbeddedTangentVector
bwVariation
=
B
[
i
];
fwVariation
*=
eps
;
bwVariation
*=
-
eps
;
typename
TargetSpace
::
EmbeddedTangentVector
fwVariation
=
eps
*
B
[
i
];
typename
TargetSpace
::
EmbeddedTangentVector
bwVariation
=
-
eps
*
B
[
i
];
TargetSpace
bPlus
=
TargetSpace
::
exp
(
b
,
fwVariation
);
TargetSpace
bMinus
=
TargetSpace
::
exp
(
b
,
bwVariation
);
d2_fd
[
i
]
=
(
energy
(
a
,
bPlus
)
-
energy
(
a
,
bMinus
))
/
(
2
*
eps
);
d2_fd
[
i
]
=
(
distanceSquared
(
a
,
bPlus
)
-
distanceSquared
(
a
,
bMinus
))
/
(
2
*
eps
);
}
// transform into embedded coordinates
...
...
@@ -150,7 +142,7 @@ void testDerivativeOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
}
template
<
class
TargetSpace
>
void
testHessianOf
Squared
Distance
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
void
testHessianOfDistance
Squared
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
{
static
const
int
embeddedDim
=
TargetSpace
::
embeddedDim
;
...
...
@@ -162,9 +154,7 @@ void testHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
// finite-difference approximation
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>
d2d2_fd
=
getSecondDerivativeOfSecondArgumentFD
<
TargetSpace
,
embeddedDim
>
(
a
,
b
);
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>
d2d2_diff
=
d2d2
;
d2d2_diff
-=
d2d2_fd
;
if
(
(
d2d2_diff
).
infinity_norm
()
>
200
*
eps
)
{
if
(
(
d2d2
-
d2d2_fd
).
infinity_norm
()
>
200
*
eps
)
{
std
::
cout
<<
className
(
a
)
<<
": Analytical second derivative does not match fd approximation."
<<
std
::
endl
;
std
::
cout
<<
"d2d2 Analytical:"
<<
std
::
endl
<<
d2d2
<<
std
::
endl
;
std
::
cout
<<
"d2d2 FD :"
<<
std
::
endl
<<
d2d2_fd
<<
std
::
endl
;
...
...
@@ -174,7 +164,7 @@ void testHessianOfSquaredDistance(const TargetSpace& a, const TargetSpace& b)
}
template
<
class
TargetSpace
>
void
testMixedDerivativesOf
Squared
Distance
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
void
testMixedDerivativesOfDistance
Squared
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
{
static
const
size_t
embeddedDim
=
TargetSpace
::
embeddedDim
;
...
...
@@ -200,16 +190,13 @@ void testMixedDerivativesOfSquaredDistance(const TargetSpace& a, const TargetSpa
bPlus
[
j
]
+=
eps
;
bMinus
[
j
]
-=
eps
;
d1d2_fd
[
i
][
j
]
=
(
energy
<
TargetSpace
>
(
aPlus
,
bPlus
)
+
energy
<
TargetSpace
>
(
aMinus
,
bMinus
)
-
energy
<
TargetSpace
>
(
aPlus
,
bMinus
)
-
energy
<
TargetSpace
>
(
aMinus
,
bPlus
))
/
(
4
*
eps
*
eps
);
d1d2_fd
[
i
][
j
]
=
(
distanceSquared
<
TargetSpace
>
(
aPlus
,
bPlus
)
+
distanceSquared
<
TargetSpace
>
(
aMinus
,
bMinus
)
-
distanceSquared
<
TargetSpace
>
(
aPlus
,
bMinus
)
-
distanceSquared
<
TargetSpace
>
(
aMinus
,
bPlus
))
/
(
4
*
eps
*
eps
);
}
}
FieldMatrix
<
double
,
embeddedDim
,
embeddedDim
>
d1d2_diff
=
d1d2
;
d1d2_diff
-=
d1d2_fd
;
if
(
(
d1d2_diff
).
infinity_norm
()
>
200
*
eps
)
{
if
(
(
d1d2
-
d1d2_fd
).
infinity_norm
()
>
200
*
eps
)
{
std
::
cout
<<
className
(
a
)
<<
": Analytical mixed second derivative does not match fd approximation."
<<
std
::
endl
;
std
::
cout
<<
"d1d2 Analytical:"
<<
std
::
endl
<<
d1d2
<<
std
::
endl
;
std
::
cout
<<
"d1d2 FD :"
<<
std
::
endl
<<
d1d2_fd
<<
std
::
endl
;
...
...
@@ -220,7 +207,7 @@ void testMixedDerivativesOfSquaredDistance(const TargetSpace& a, const TargetSpa
template
<
class
TargetSpace
>
void
testDerivativeOfHessianOf
Squared
Distance
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
void
testDerivativeOfHessianOfDistance
Squared
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
{
static
const
size_t
embeddedDim
=
TargetSpace
::
embeddedDim
;
...
...
@@ -259,7 +246,7 @@ void testDerivativeOfHessianOfSquaredDistance(const TargetSpace& a, const Target
template
<
class
TargetSpace
>
void
testMixedDerivativeOfHessianOf
Squared
Distance
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
void
testMixedDerivativeOfHessianOfDistance
Squared
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
{
static
const
size_t
embeddedDim
=
TargetSpace
::
embeddedDim
;
...
...
@@ -298,38 +285,38 @@ void testMixedDerivativeOfHessianOfSquaredDistance(const TargetSpace& a, const T
template
<
class
TargetSpace
>
void
testDerivativesOf
Squared
Distance
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
void
testDerivativesOfDistance
Squared
(
const
TargetSpace
&
a
,
const
TargetSpace
&
b
)
{
///////////////////////////////////////////////////////////////////
// Test derivative with respect to second argument
///////////////////////////////////////////////////////////////////
testDerivativeOf
Squared
Distance
<
TargetSpace
>
(
a
,
b
);
testDerivativeOfDistance
Squared
<
TargetSpace
>
(
a
,
b
);
///////////////////////////////////////////////////////////////////
// Test second derivative with respect to second argument
///////////////////////////////////////////////////////////////////
testHessianOf
Squared
Distance
<
TargetSpace
>
(
a
,
b
);
testHessianOfDistance
Squared
<
TargetSpace
>
(
a
,
b
);
//////////////////////////////////////////////////////////////////////////////
// Test mixed second derivative with respect to first and second argument
//////////////////////////////////////////////////////////////////////////////
testMixedDerivativesOf
Squared
Distance
<
TargetSpace
>
(
a
,
b
);
testMixedDerivativesOfDistance
Squared
<
TargetSpace
>
(
a
,
b
);
/////////////////////////////////////////////////////////////////////////////////////////////
// Test third derivative with respect to second argument
/////////////////////////////////////////////////////////////////////////////////////////////
testDerivativeOfHessianOf
Squared
Distance
<
TargetSpace
>
(
a
,
b
);
testDerivativeOfHessianOfDistance
Squared
<
TargetSpace
>
(
a
,
b
);
/////////////////////////////////////////////////////////////////////////////////////////////
// Test mixed third derivative with respect to first (once) and second (twice) argument
/////////////////////////////////////////////////////////////////////////////////////////////
testMixedDerivativeOfHessianOf
Squared
Distance
<
TargetSpace
>
(
a
,
b
);
testMixedDerivativeOfHessianOfDistance
Squared
<
TargetSpace
>
(
a
,
b
);
}
...
...
@@ -357,7 +344,7 @@ void test()
if
(
diameter
(
testPointPair
)
>
TargetSpace
::
convexityRadius
)
continue
;
testDerivativesOf
Squared
Distance
<
TargetSpace
>
(
testPoints
[
i
],
testPoints
[
j
]);
testDerivativesOfDistance
Squared
<
TargetSpace
>
(
testPoints
[
i
],
testPoints
[
j
]);
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment