Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
a0902b1e
Commit
a0902b1e
authored
10 years ago
by
Oliver Sander
Committed by
sander
10 years ago
Browse files
Options
Downloads
Patches
Plain Diff
New program to experiment with finite strain elasticity models
[[Imported from SVN: r9943]]
parent
2eb3a6b0
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Makefile.am
+9
-0
9 additions, 0 deletions
Makefile.am
finite-strain-elasticity.cc
+376
-0
376 additions, 0 deletions
finite-strain-elasticity.cc
with
385 additions
and
0 deletions
Makefile.am
+
9
−
0
View file @
a0902b1e
...
...
@@ -14,6 +14,7 @@ ADOLC_LDFLAGS = -L/home/sander/adolc-inst/lib64
ADOLC_LIBS
=
-ladolc
noinst_PROGRAMS
=
cosserat-continuum
\
finite-strain-elasticity
\
mixed-cosserat-continuum
\
rodobstacle rod3d harmonicmaps harmonicmaps-eoc rod-eoc
...
...
@@ -25,6 +26,14 @@ cosserat_continuum_LDADD = $(UG_LIBS) $(IPOPT_LIBS) \
cosserat_continuum_LDFLAGS
=
$(
UG_LDFLAGS
)
$(
IPOPT_LDFLAGS
)
\
$(
ADOLC_LDFLAGS
)
$(
PYTHON_LDFLAGS
)
finite_strain_elasticity_SOURCES
=
finite-strain-elasticity.cc
finite_strain_elasticity_CXXFLAGS
=
$(
UG_CPPFLAGS
)
$(
IPOPT_CPPFLAGS
)
\
$(
ADOLC_CPPFLAGS
)
$(
PYTHON_CPPFLAGS
)
$(
UMFPACK_CPPFLAGS
)
finite_strain_elasticity_LDADD
=
$(
UG_LIBS
)
$(
IPOPT_LIBS
)
\
$(
ADOLC_LIBS
)
$(
PYTHON_LIBS
)
$(
UMFPACK_LIBS
)
finite_strain_elasticity_LDFLAGS
=
$(
UG_LDFLAGS
)
$(
IPOPT_LDFLAGS
)
\
$(
ADOLC_LDFLAGS
)
$(
PYTHON_LDFLAGS
)
$(
UMFPACK_LDFLAGS
)
mixed_cosserat_continuum_SOURCES
=
mixed-cosserat-continuum.cc
mixed_cosserat_continuum_CXXFLAGS
=
$(
UG_CPPFLAGS
)
$(
IPOPT_CPPFLAGS
)
\
$(
ADOLC_CPPFLAGS
)
$(
PYTHON_CPPFLAGS
)
...
...
This diff is collapsed.
Click to expand it.
finite-strain-elasticity.cc
0 → 100644
+
376
−
0
View file @
a0902b1e
#include
<config.h>
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include
<adolc/adouble.h>
#include
<adolc/drivers/drivers.h>
// use of "Easy to Use" drivers
#include
<adolc/taping.h>
#include
<dune/gfe/adolcnamespaceinjections.hh>
#include
<dune/common/bitsetvector.hh>
#include
<dune/common/parametertree.hh>
#include
<dune/common/parametertreeparser.hh>
#include
<dune/grid/uggrid.hh>
#include
<dune/grid/utility/structuredgridfactory.hh>
#include
<dune/grid/io/file/gmshreader.hh>
#include
<dune/grid/io/file/vtk.hh>
#include
<dune/fufem/boundarypatch.hh>
#include
<dune/fufem/functions/vtkbasisgridfunction.hh>
#include
<dune/fufem/functiontools/boundarydofs.hh>
#include
<dune/fufem/functiontools/basisinterpolator.hh>
#include
<dune/fufem/functionspacebases/p1nodalbasis.hh>
#include
<dune/fufem/functionspacebases/p2nodalbasis.hh>
#include
<dune/fufem/dunepython.hh>
#include
<dune/solvers/solvers/iterativesolver.hh>
#include
<dune/solvers/norms/energynorm.hh>
#include
<dune/gfe/localadolcstiffness.hh>
#include
<dune/gfe/stvenantkirchhoffenergy.hh>
#include
<dune/gfe/feassembler.hh>
#include
<dune/gfe/trustregionsolver.hh>
// grid dimension
const
int
dim
=
3
;
using
namespace
Dune
;
/** \brief A constant vector-valued function, for simple Neumann boundary values */
struct
NeumannFunction
:
public
Dune
::
VirtualFunction
<
FieldVector
<
double
,
dim
>
,
FieldVector
<
double
,
3
>
>
{
NeumannFunction
(
const
FieldVector
<
double
,
3
>
values
,
double
homotopyParameter
)
:
values_
(
values
),
homotopyParameter_
(
homotopyParameter
)
{}
void
evaluate
(
const
FieldVector
<
double
,
dim
>&
x
,
FieldVector
<
double
,
3
>&
out
)
const
{
out
=
0
;
out
.
axpy
(
-
homotopyParameter_
,
values_
);
}
FieldVector
<
double
,
3
>
values_
;
double
homotopyParameter_
;
};
int
main
(
int
argc
,
char
*
argv
[])
try
{
// initialize MPI, finalize is done automatically on exit
Dune
::
MPIHelper
&
mpiHelper
=
MPIHelper
::
instance
(
argc
,
argv
);
// Start Python interpreter
Python
::
start
();
Python
::
Reference
main
=
Python
::
import
(
"__main__"
);
Python
::
run
(
"import math"
);
//feenableexcept(FE_INVALID);
Python
::
runStream
()
<<
std
::
endl
<<
"import sys"
<<
std
::
endl
<<
"sys.path.append('/home/sander/dune/dune-gfe/')"
<<
std
::
endl
;
typedef
std
::
vector
<
FieldVector
<
double
,
dim
>
>
SolutionType
;
// parse data file
ParameterTree
parameterSet
;
// if (argc != 2)
// DUNE_THROW(Exception, "Usage: ./hencky-material <parameter file>");
ParameterTreeParser
::
readINITree
(
argv
[
1
],
parameterSet
);
ParameterTreeParser
::
readOptions
(
argc
,
argv
,
parameterSet
);
// read solver settings
const
int
numLevels
=
parameterSet
.
get
<
int
>
(
"numLevels"
);
int
numHomotopySteps
=
parameterSet
.
get
<
int
>
(
"numHomotopySteps"
);
const
double
tolerance
=
parameterSet
.
get
<
double
>
(
"tolerance"
);
const
int
maxTrustRegionSteps
=
parameterSet
.
get
<
int
>
(
"maxTrustRegionSteps"
);
const
double
initialTrustRegionRadius
=
parameterSet
.
get
<
double
>
(
"initialTrustRegionRadius"
);
const
int
multigridIterations
=
parameterSet
.
get
<
int
>
(
"numIt"
);
const
int
nu1
=
parameterSet
.
get
<
int
>
(
"nu1"
);
const
int
nu2
=
parameterSet
.
get
<
int
>
(
"nu2"
);
const
int
mu
=
parameterSet
.
get
<
int
>
(
"mu"
);
const
int
baseIterations
=
parameterSet
.
get
<
int
>
(
"baseIt"
);
const
double
mgTolerance
=
parameterSet
.
get
<
double
>
(
"mgTolerance"
);
const
double
baseTolerance
=
parameterSet
.
get
<
double
>
(
"baseTolerance"
);
const
bool
instrumented
=
parameterSet
.
get
<
bool
>
(
"instrumented"
);
std
::
string
resultPath
=
parameterSet
.
get
(
"resultPath"
,
""
);
// ///////////////////////////////////////
// Create the grid
// ///////////////////////////////////////
typedef
UGGrid
<
dim
>
GridType
;
shared_ptr
<
GridType
>
grid
;
FieldVector
<
double
,
dim
>
lower
(
0
),
upper
(
1
);
if
(
parameterSet
.
get
<
bool
>
(
"structuredGrid"
))
{
lower
=
parameterSet
.
get
<
FieldVector
<
double
,
dim
>
>
(
"lower"
);
upper
=
parameterSet
.
get
<
FieldVector
<
double
,
dim
>
>
(
"upper"
);
array
<
unsigned
int
,
dim
>
elements
=
parameterSet
.
get
<
array
<
unsigned
int
,
dim
>
>
(
"elements"
);
grid
=
StructuredGridFactory
<
GridType
>::
createCubeGrid
(
lower
,
upper
,
elements
);
}
else
{
std
::
string
path
=
parameterSet
.
get
<
std
::
string
>
(
"path"
);
std
::
string
gridFile
=
parameterSet
.
get
<
std
::
string
>
(
"gridFile"
);
grid
=
shared_ptr
<
GridType
>
(
GmshReader
<
GridType
>::
read
(
path
+
"/"
+
gridFile
));
}
grid
->
globalRefine
(
numLevels
-
1
);
grid
->
loadBalance
();
if
(
mpiHelper
.
rank
()
==
0
)
std
::
cout
<<
"There are "
<<
grid
->
leafGridView
().
comm
().
size
()
<<
" processes"
<<
std
::
endl
;
typedef
GridType
::
LeafGridView
GridView
;
GridView
gridView
=
grid
->
leafGridView
();
typedef
P1NodalBasis
<
GridView
,
double
>
FEBasis
;
FEBasis
feBasis
(
gridView
);
// /////////////////////////////////////////
// Read Dirichlet values
// /////////////////////////////////////////
BitSetVector
<
1
>
dirichletVertices
(
gridView
.
size
(
dim
),
false
);
BitSetVector
<
1
>
neumannVertices
(
gridView
.
size
(
dim
),
false
);
GridType
::
Codim
<
dim
>::
LeafIterator
vIt
=
gridView
.
begin
<
dim
>
();
GridType
::
Codim
<
dim
>::
LeafIterator
vEndIt
=
gridView
.
end
<
dim
>
();
const
GridView
::
IndexSet
&
indexSet
=
gridView
.
indexSet
();
// Make Python function that computes which vertices are on the Dirichlet boundary,
// based on the vertex positions.
std
::
string
lambda
=
std
::
string
(
"lambda x: ("
)
+
parameterSet
.
get
<
std
::
string
>
(
"dirichletVerticesPredicate"
)
+
std
::
string
(
")"
);
PythonFunction
<
FieldVector
<
double
,
dim
>
,
bool
>
pythonDirichletVertices
(
Python
::
evaluate
(
lambda
));
// Same for the Neumann boundary
lambda
=
std
::
string
(
"lambda x: ("
)
+
parameterSet
.
get
<
std
::
string
>
(
"neumannVerticesPredicate"
,
"0"
)
+
std
::
string
(
")"
);
PythonFunction
<
FieldVector
<
double
,
dim
>
,
bool
>
pythonNeumannVertices
(
Python
::
evaluate
(
lambda
));
for
(;
vIt
!=
vEndIt
;
++
vIt
)
{
bool
isDirichlet
;
pythonDirichletVertices
.
evaluate
(
vIt
->
geometry
().
corner
(
0
),
isDirichlet
);
dirichletVertices
[
indexSet
.
index
(
*
vIt
)]
=
isDirichlet
;
bool
isNeumann
;
pythonNeumannVertices
.
evaluate
(
vIt
->
geometry
().
corner
(
0
),
isNeumann
);
neumannVertices
[
indexSet
.
index
(
*
vIt
)]
=
isNeumann
;
}
BoundaryPatch
<
GridView
>
dirichletBoundary
(
gridView
,
dirichletVertices
);
BoundaryPatch
<
GridView
>
neumannBoundary
(
gridView
,
neumannVertices
);
if
(
mpiHelper
.
rank
()
==
0
)
std
::
cout
<<
"Neumann boundary has "
<<
neumannBoundary
.
numFaces
()
<<
" faces
\n
"
;
BitSetVector
<
1
>
dirichletNodes
(
feBasis
.
size
(),
false
);
constructBoundaryDofs
(
dirichletBoundary
,
feBasis
,
dirichletNodes
);
BitSetVector
<
1
>
neumannNodes
(
feBasis
.
size
(),
false
);
constructBoundaryDofs
(
neumannBoundary
,
feBasis
,
neumannNodes
);
BitSetVector
<
dim
>
dirichletDofs
(
feBasis
.
size
(),
false
);
for
(
size_t
i
=
0
;
i
<
feBasis
.
size
();
i
++
)
if
(
dirichletNodes
[
i
][
0
])
for
(
int
j
=
0
;
j
<
dim
;
j
++
)
dirichletDofs
[
i
][
j
]
=
true
;
// //////////////////////////
// Initial iterate
// //////////////////////////
SolutionType
x
(
feBasis
.
size
());
lambda
=
std
::
string
(
"lambda x: ("
)
+
parameterSet
.
get
<
std
::
string
>
(
"initialDeformation"
)
+
std
::
string
(
")"
);
PythonFunction
<
FieldVector
<
double
,
dim
>
,
FieldVector
<
double
,
3
>
>
pythonInitialDeformation
(
Python
::
evaluate
(
lambda
));
std
::
vector
<
FieldVector
<
double
,
3
>
>
v
;
Functions
::
interpolate
(
feBasis
,
v
,
pythonInitialDeformation
);
for
(
size_t
i
=
0
;
i
<
x
.
size
();
i
++
)
x
[
i
]
=
v
[
i
];
lambda
=
std
::
string
(
"lambda x: ("
)
+
parameterSet
.
get
<
std
::
string
>
(
"identity"
)
+
std
::
string
(
")"
);
PythonFunction
<
FieldVector
<
double
,
dim
>
,
FieldVector
<
double
,
3
>
>
pythonIdentity
(
Python
::
evaluate
(
lambda
));
SolutionType
identity
;
Functions
::
interpolate
(
feBasis
,
identity
,
pythonIdentity
);
////////////////////////////////////////////////////////
// Main homotopy loop
////////////////////////////////////////////////////////
// Output initial iterate (of homotopy loop)
VTKWriter
<
GridType
::
LeafGridView
>
vtkWriter
(
grid
->
leafGridView
());
BlockVector
<
FieldVector
<
double
,
3
>
>
displacement
(
x
.
size
());
for
(
auto
it
=
grid
->
leafGridView
().
template
begin
<
dim
>();
it
!=
grid
->
leafGridView
().
template
end
<
dim
>();
++
it
)
{
size_t
idx
=
grid
->
leafGridView
().
indexSet
().
index
(
*
it
);
displacement
[
idx
]
=
x
[
idx
]
-
it
->
geometry
().
corner
(
0
);
//std::cout << "idx: " << idx << " coordinate: " << it->geometry().corner(0) << std::endl;
}
Dune
::
shared_ptr
<
VTKBasisGridFunction
<
FEBasis
,
BlockVector
<
FieldVector
<
double
,
3
>
>
>
>
vtkDisplacement
=
Dune
::
make_shared
<
VTKBasisGridFunction
<
FEBasis
,
BlockVector
<
FieldVector
<
double
,
3
>
>
>
>
(
feBasis
,
displacement
,
"Displacement"
);
vtkWriter
.
addVertexData
(
vtkDisplacement
);
vtkWriter
.
write
(
resultPath
+
"hencky_homotopy_0"
);
for
(
int
i
=
0
;
i
<
numHomotopySteps
;
i
++
)
{
double
homotopyParameter
=
(
i
+
1
)
*
(
1.0
/
numHomotopySteps
);
if
(
mpiHelper
.
rank
()
==
0
)
std
::
cout
<<
"Homotopy step: "
<<
i
<<
", parameter: "
<<
homotopyParameter
<<
std
::
endl
;
// ////////////////////////////////////////////////////////////
// Create an assembler for the energy functional
// ////////////////////////////////////////////////////////////
const
ParameterTree
&
materialParameters
=
parameterSet
.
sub
(
"materialParameters"
);
shared_ptr
<
NeumannFunction
>
neumannFunction
;
if
(
parameterSet
.
hasKey
(
"neumannValues"
))
neumannFunction
=
make_shared
<
NeumannFunction
>
(
parameterSet
.
get
<
FieldVector
<
double
,
3
>
>
(
"neumannValues"
),
homotopyParameter
);
std
::
cout
<<
"Neumann values: "
<<
parameterSet
.
get
<
FieldVector
<
double
,
3
>
>
(
"neumannValues"
)
<<
std
::
endl
;
if
(
mpiHelper
.
rank
()
==
0
)
{
std
::
cout
<<
"Material parameters:"
<<
std
::
endl
;
materialParameters
.
report
();
}
// Assembler using ADOL-C
StVenantKirchhoffEnergy
<
GridView
,
FEBasis
::
LocalFiniteElement
,
adouble
>
henckyEnergy
(
materialParameters
,
#if 0
&neumannBoundary,
neumannFunction.get());
#else
nullptr
,
nullptr
);
#endif
LocalADOLCStiffness
<
GridView
,
FEBasis
::
LocalFiniteElement
,
SolutionType
>
localADOLCStiffness
(
&
henckyEnergy
);
FEAssembler
<
FEBasis
,
SolutionType
>
assembler
(
gridView
,
&
localADOLCStiffness
);
std
::
vector
<
FieldVector
<
double
,
3
>
>
pointLoads
(
x
.
size
());
std
::
fill
(
pointLoads
.
begin
(),
pointLoads
.
end
(),
0
);
pointLoads
[
1372
]
=
parameterSet
.
get
<
FieldVector
<
double
,
3
>
>
(
"neumannValues"
);
pointLoads
[
1372
]
*=
0.5
;
// /////////////////////////////////////////////////
// Create a Riemannian trust-region solver
// /////////////////////////////////////////////////
TrustRegionSolver
<
GridType
,
SolutionType
>
solver
;
solver
.
setup
(
*
grid
,
&
assembler
,
x
,
dirichletDofs
,
tolerance
,
maxTrustRegionSteps
,
initialTrustRegionRadius
,
multigridIterations
,
mgTolerance
,
mu
,
nu1
,
nu2
,
baseIterations
,
baseTolerance
,
pointLoads
);
solver
.
identity_
=
identity
;
////////////////////////////////////////////////////////
// Set Dirichlet values
////////////////////////////////////////////////////////
Python
::
Reference
dirichletValuesClass
=
Python
::
import
(
parameterSet
.
get
<
std
::
string
>
(
"problem"
)
+
"-dirichlet-values"
);
Python
::
Callable
C
=
dirichletValuesClass
.
get
(
"DirichletValues"
);
// Call a constructor.
Python
::
Reference
dirichletValuesPythonObject
=
C
(
homotopyParameter
);
// Extract object member functions as Dune functions
PythonFunction
<
FieldVector
<
double
,
dim
>
,
FieldVector
<
double
,
3
>
>
dirichletValues
(
dirichletValuesPythonObject
.
get
(
"dirichletValues"
));
std
::
vector
<
FieldVector
<
double
,
3
>
>
ddV
;
Functions
::
interpolate
(
feBasis
,
ddV
,
dirichletValues
,
dirichletDofs
);
for
(
size_t
j
=
0
;
j
<
x
.
size
();
j
++
)
if
(
dirichletNodes
[
j
][
0
])
x
[
j
]
=
ddV
[
j
];
// /////////////////////////////////////////////////////
// Solve!
// /////////////////////////////////////////////////////
solver
.
setInitialIterate
(
x
);
solver
.
solve
();
x
=
solver
.
getSol
();
// Output result of each homotopy step
VTKWriter
<
GridType
::
LeafGridView
>
vtkWriter
(
grid
->
leafGridView
());
BlockVector
<
FieldVector
<
double
,
3
>
>
displacement
(
x
.
size
());
for
(
auto
it
=
grid
->
leafGridView
().
template
begin
<
dim
>();
it
!=
grid
->
leafGridView
().
template
end
<
dim
>();
++
it
)
{
size_t
idx
=
grid
->
leafGridView
().
indexSet
().
index
(
*
it
);
displacement
[
idx
]
=
x
[
idx
]
-
it
->
geometry
().
corner
(
0
);
}
Dune
::
shared_ptr
<
VTKBasisGridFunction
<
FEBasis
,
BlockVector
<
FieldVector
<
double
,
3
>
>
>
>
vtkDisplacement
=
Dune
::
make_shared
<
VTKBasisGridFunction
<
FEBasis
,
BlockVector
<
FieldVector
<
double
,
3
>
>
>
>
(
feBasis
,
displacement
,
"Displacement"
);
vtkWriter
.
addVertexData
(
vtkDisplacement
);
vtkWriter
.
write
(
resultPath
+
"hencky_homotopy_"
+
std
::
to_string
(
i
+
1
));
}
// //////////////////////////////
// Output result
// //////////////////////////////
// finally: compute the average deformation of the Neumann boundary
// That is what we need for the locking tests
FieldVector
<
double
,
3
>
averageDef
(
0
);
for
(
size_t
i
=
0
;
i
<
x
.
size
();
i
++
)
if
(
neumannNodes
[
i
][
0
])
{
averageDef
+=
x
[
i
];
std
::
cout
<<
"i: "
<<
i
<<
", pos: "
<<
x
[
i
]
<<
std
::
endl
;
}
averageDef
/=
neumannNodes
.
count
();
if
(
mpiHelper
.
rank
()
==
0
)
{
std
::
cout
<<
"Neumann value = "
<<
parameterSet
.
get
<
std
::
string
>
(
"neumannValues"
)
<<
std
::
endl
;
std
::
cout
<<
"Neumann value = "
<<
parameterSet
.
get
<
FieldVector
<
double
,
dim
>
>
(
"neumannValues"
)
<<
" "
<<
", average deflection: "
<<
averageDef
<<
std
::
endl
;
}
}
catch
(
Exception
e
)
{
std
::
cout
<<
e
<<
std
::
endl
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment