Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-gfe
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sander, Oliver
dune-gfe
Commits
f0a8d830
Commit
f0a8d830
authored
17 years ago
by
Oliver Sander
Committed by
sander@PCPOOL.MI.FU-BERLIN.DE
17 years ago
Browse files
Options
Downloads
Patches
Plain Diff
error mesurement infrastructure
[[Imported from SVN: r1530]]
parent
426f5c5e
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dirneucoupling.cc
+212
-18
212 additions, 18 deletions
dirneucoupling.cc
with
212 additions
and
18 deletions
dirneucoupling.cc
+
212
−
18
View file @
f0a8d830
...
...
@@ -30,6 +30,7 @@
#include
"src/configuration.hh"
#include
"src/averageinterface.hh"
#include
"src/rodsolver.hh"
#include
"src/roddifference.hh"
#include
"src/rodwriter.hh"
// Space dimension
...
...
@@ -38,12 +39,23 @@ const int dim = 3;
using
namespace
Dune
;
using
std
::
string
;
template
<
class
DiscFuncType
,
int
blocksize
>
double
computeEnergyNormSquared
(
const
DiscFuncType
&
u
,
const
BCRSMatrix
<
FieldMatrix
<
double
,
blocksize
,
blocksize
>
>&
A
)
{
DiscFuncType
tmp
(
u
.
size
());
tmp
=
0
;
A
.
umv
(
u
,
tmp
);
return
u
*
tmp
;
}
int
main
(
int
argc
,
char
*
argv
[])
try
{
// Some types that I need
typedef
BCRSMatrix
<
FieldMatrix
<
double
,
dim
,
dim
>
>
MatrixType
;
typedef
BlockVector
<
FieldVector
<
double
,
dim
>
>
VectorType
;
typedef
std
::
vector
<
Configuration
>
RodSolutionType
;
typedef
BlockVector
<
FieldVector
<
double
,
6
>
>
RodDifferenceType
;
// parse data file
ConfigParser
parameterSet
;
...
...
@@ -52,7 +64,9 @@ int main (int argc, char *argv[]) try
// read solver settings
const
int
minLevel
=
parameterSet
.
get
(
"minLevel"
,
int
(
0
));
const
int
maxLevel
=
parameterSet
.
get
(
"maxLevel"
,
int
(
0
));
const
double
ddTolerance
=
parameterSet
.
get
(
"ddTolerance"
,
double
(
0
));
const
int
maxDirichletNeumannSteps
=
parameterSet
.
get
(
"maxDirichletNeumannSteps"
,
int
(
0
));
const
double
trTolerance
=
parameterSet
.
get
(
"trTolerance"
,
double
(
0
));
const
int
maxTrustRegionSteps
=
parameterSet
.
get
(
"maxTrustRegionSteps"
,
int
(
0
));
const
int
multigridIterations
=
parameterSet
.
get
(
"numIt"
,
int
(
0
));
const
int
nu1
=
parameterSet
.
get
(
"nu1"
,
int
(
0
));
...
...
@@ -61,7 +75,7 @@ int main (int argc, char *argv[]) try
const
int
baseIterations
=
parameterSet
.
get
(
"baseIt"
,
int
(
0
));
const
double
mgTolerance
=
parameterSet
.
get
(
"tolerance"
,
double
(
0
));
const
double
baseTolerance
=
parameterSet
.
get
(
"baseTolerance"
,
double
(
0
));
const
int
initialTrustRegionRadius
=
parameterSet
.
get
(
"initialTrustRegionRadius"
,
int
(
0
));
const
double
initialTrustRegionRadius
=
parameterSet
.
get
(
"initialTrustRegionRadius"
,
double
(
0
));
const
double
damping
=
parameterSet
.
get
(
"damping"
,
double
(
1
));
// Problem settings
...
...
@@ -72,7 +86,6 @@ int main (int argc, char *argv[]) try
std
::
string
interfaceNodesFile
=
parameterSet
.
get
(
"interfaceNodes"
,
"xyz"
);
const
int
numRodBaseElements
=
parameterSet
.
get
(
"numRodBaseElements"
,
int
(
0
));
// ///////////////////////////////////////
// Create the rod grid
// ///////////////////////////////////////
...
...
@@ -192,13 +205,15 @@ int main (int argc, char *argv[]) try
rodSolver
.
setup
(
rodGrid
,
&
rodAssembler
,
rodX
,
trTolerance
,
maxTrustRegionSteps
,
initialTrustRegionRadius
,
multigridIterations
,
mgTolerance
,
mu
,
nu1
,
nu2
,
baseIterations
,
baseTolerance
);
baseTolerance
,
false
);
// ////////////////////////////////
// Create a multigrid solver
...
...
@@ -229,7 +244,7 @@ int main (int argc, char *argv[]) try
multigridIterations
,
mgTolerance
,
&
energyNorm
,
Solver
::
FULL
);
Solver
::
QUIET
);
// ////////////////////////////////////
// Create the transfer operators
...
...
@@ -253,12 +268,18 @@ int main (int argc, char *argv[]) try
Configuration
referenceInterface
=
rodX
[
0
];
Configuration
lambda
=
referenceInterface
;
//
double
normOfOldCorrection
=
0
;
for
(
int
i
=
0
;
i
<
maxDirichletNeumannSteps
;
i
++
)
{
std
::
cout
<<
"----------------------------------------------------"
<<
std
::
endl
;
std
::
cout
<<
" Dirichlet-Neumann Step Number: "
<<
i
<<
std
::
endl
;
std
::
cout
<<
"----------------------------------------------------"
<<
std
::
endl
;
// Backup of the current solution for the error computation later on
VectorType
oldSolution3d
=
x3d
;
// //////////////////////////////////////////////////
// Dirichlet step for the rod
// //////////////////////////////////////////////////
...
...
@@ -272,16 +293,20 @@ int main (int argc, char *argv[]) try
// ///////////////////////////////////////////////////////////
// Extract Neumann values and transfer it to the 3d object
// ///////////////////////////////////////////////////////////
FieldVector
<
double
,
dim
>
resultantForce
=
rodAssembler
.
getResultantForce
(
rodX
);
BitField
couplingBitfield
(
rodX
.
size
(),
false
);
// Using the index 0 is always the left boundary for a uniformly refined OneDGrid
couplingBitfield
[
0
]
=
true
;
BoundaryPatch
<
RodGridType
>
couplingBoundary
(
rodGrid
,
rodGrid
.
maxLevel
(),
couplingBitfield
);
FieldVector
<
double
,
dim
>
resultantTorque
;
FieldVector
<
double
,
dim
>
resultantForce
=
rodAssembler
.
getResultantForce
(
couplingBoundary
,
rodX
,
resultantTorque
);
std
::
cout
<<
"resultant force: "
<<
resultantForce
<<
std
::
endl
;
#if 0
FieldVector<double,dim> resultantTorque = rodAssembler.getResultantTorque(grid, rodX);
#endif
std
::
cout
<<
"resultant torque: "
<<
resultantTorque
<<
std
::
endl
;
VectorType
neumannValues
(
grid
.
size
(
dim
));
neumannValues
=
0
;
for
(
int
j
=
0
;
j
<
neumannValues
.
size
();
j
++
)
if
(
interfaceBoundary
[
grid
.
maxLevel
()].
containsVertex
(
j
))
neumannValues
[
j
]
=
resultantForce
;
computeAveragePressure
<
GridType
>
(
resultantForce
,
resultantTorque
,
interfaceBoundary
[
grid
.
maxLevel
()],
neumannValues
);
rhs3d
=
0
;
assembleAndAddNeumannTerm
<
GridType
,
VectorType
>
(
interfaceBoundary
[
grid
.
maxLevel
()],
...
...
@@ -305,10 +330,6 @@ int main (int argc, char *argv[]) try
// ///////////////////////////////////////////////////////////
Configuration
averageInterface
;
// x3d = 0;
// for (int i=0; i<x3d.size(); i++)
// x3d[i][2] = 1;
computeAverageInterface
(
interfaceBoundary
[
toplevel
],
x3d
,
averageInterface
);
std
::
cout
<<
"average interface: "
<<
averageInterface
<<
std
::
endl
;
...
...
@@ -321,8 +342,181 @@ int main (int argc, char *argv[]) try
lambda
.
r
[
j
]
=
(
1
-
damping
)
*
lambda
.
r
[
j
]
+
damping
*
(
referenceInterface
.
r
[
j
]
+
averageInterface
.
r
[
j
]);
lambda
.
q
=
averageInterface
.
q
.
mult
(
referenceInterface
.
q
);
// ////////////////////////////////////////////////////////////////////////
// Write the two iterates to disk for later convergence rate measurement
// ////////////////////////////////////////////////////////////////////////
// First the 3d body
char
iSolFilename
[
100
];
sprintf
(
iSolFilename
,
"tmp/intermediate3dSolution_%04d"
,
i
);
FILE
*
fp
=
fopen
(
iSolFilename
,
"wb"
);
if
(
!
fp
)
DUNE_THROW
(
SolverError
,
"Couldn't open file "
<<
iSolFilename
<<
" for writing"
);
for
(
int
j
=
0
;
j
<
x3d
.
size
();
j
++
)
for
(
int
k
=
0
;
k
<
dim
;
k
++
)
fwrite
(
&
x3d
[
j
][
k
],
sizeof
(
double
),
1
,
fp
);
fclose
(
fp
);
// Then the rod
char
iRodFilename
[
100
];
sprintf
(
iRodFilename
,
"tmp/intermediateRodSolution_%04d"
,
i
);
FILE
*
fpRod
=
fopen
(
iRodFilename
,
"wb"
);
if
(
!
fpRod
)
DUNE_THROW
(
SolverError
,
"Couldn't open file "
<<
iRodFilename
<<
" for writing"
);
for
(
int
j
=
0
;
j
<
rodX
.
size
();
j
++
)
{
for
(
int
k
=
0
;
k
<
dim
;
k
++
)
fwrite
(
&
rodX
[
j
].
r
[
k
],
sizeof
(
double
),
1
,
fpRod
);
for
(
int
k
=
0
;
k
<
4
;
k
++
)
// 3d hardwired here!
fwrite
(
&
rodX
[
j
].
q
[
k
],
sizeof
(
double
),
1
,
fpRod
);
}
fclose
(
fpRod
);
// ////////////////////////////////////////////
// Compute error in the energy norm
// ////////////////////////////////////////////
// the 3d body
double
oldNorm
=
computeEnergyNormSquared
(
oldSolution3d
,
*
hessian3d
);
oldSolution3d
-=
x3d
;
double
normOfCorrection
=
computeEnergyNormSquared
(
oldSolution3d
,
*
hessian3d
);
// the rod \todo missing
#warning Energy error of the rod still missing
oldNorm
=
std
::
sqrt
(
oldNorm
);
normOfCorrection
=
std
::
sqrt
(
normOfCorrection
);
double
relativeError
=
normOfCorrection
/
oldNorm
;
double
convRate
=
normOfCorrection
/
normOfOldCorrection
;
normOfOldCorrection
=
normOfCorrection
;
// Output
std
::
cout
<<
"DD iteration: "
<<
i
<<
" -- ||u^{n+1} - u^n||: "
<<
relativeError
<<
", "
<<
"convrate "
<<
convRate
<<
"
\n
"
;
if
(
relativeError
<
ddTolerance
)
break
;
}
// //////////////////////////////////////////////////////////
// Recompute and compare against exact solution
// //////////////////////////////////////////////////////////
VectorType
exactSol3d
=
x3d
;
RodSolutionType
exactSolRod
=
rodX
;
// //////////////////////////////////////////////////////////
// Compute hessian of the rod functional at the exact solution
// for use of the energy norm it creates.
// //////////////////////////////////////////////////////////
BCRSMatrix
<
FieldMatrix
<
double
,
6
,
6
>
>
hessianRod
;
MatrixIndexSet
indices
(
exactSolRod
.
size
(),
exactSolRod
.
size
());
rodAssembler
.
getNeighborsPerVertex
(
indices
);
indices
.
exportIdx
(
hessianRod
);
rodAssembler
.
assembleMatrix
(
exactSolRod
,
hessianRod
);
double
error
=
std
::
numeric_limits
<
double
>::
max
();
double
oldError
=
0
;
double
totalConvRate
=
1
;
VectorType
intermediateSol3d
(
x3d
.
size
());
RodSolutionType
intermediateSolRod
(
rodX
.
size
());
// Compute error of the initial 3d solution
// This should really be exactSol-initialSol, but we're starting
// from zero anyways
oldError
+=
computeEnergyNormSquared
(
exactSol3d
,
*
hessian3d
);
/** \todo Rod error still missing */
oldError
=
std
::
sqrt
(
oldError
);
int
i
;
for
(
i
=
0
;
i
<
maxDirichletNeumannSteps
;
i
++
)
{
// /////////////////////////////////////////////////////
// Read iteration from file
// /////////////////////////////////////////////////////
// Read 3d solution from file
char
iSolFilename
[
100
];
sprintf
(
iSolFilename
,
"tmp/intermediate3dSolution_%04d"
,
i
);
FILE
*
fpInt
=
fopen
(
iSolFilename
,
"rb"
);
if
(
!
fpInt
)
DUNE_THROW
(
IOError
,
"Couldn't open intermediate solution '"
<<
iSolFilename
<<
"'"
);
for
(
int
j
=
0
;
j
<
intermediateSol3d
.
size
();
j
++
)
fread
(
&
intermediateSol3d
[
j
],
sizeof
(
double
),
dim
,
fpInt
);
fclose
(
fpInt
);
// Read rod solution from file
sprintf
(
iSolFilename
,
"tmp/intermediateRodSolution_%04d"
,
i
);
fpInt
=
fopen
(
iSolFilename
,
"rb"
);
if
(
!
fpInt
)
DUNE_THROW
(
IOError
,
"Couldn't open intermediate solution '"
<<
iSolFilename
<<
"'"
);
for
(
int
j
=
0
;
j
<
intermediateSolRod
.
size
();
j
++
)
{
fread
(
&
intermediateSolRod
[
j
].
r
,
sizeof
(
double
),
dim
,
fpInt
);
fread
(
&
intermediateSolRod
[
j
].
q
,
sizeof
(
double
),
4
,
fpInt
);
}
fclose
(
fpInt
);
// /////////////////////////////////////////////////////
// Compute error
// /////////////////////////////////////////////////////
VectorType
solBackup0
=
intermediateSol3d
;
solBackup0
-=
exactSol3d
;
RodDifferenceType
rodDifference
=
computeRodDifference
(
exactSolRod
,
intermediateSolRod
);
error
=
std
::
sqrt
(
computeEnergyNormSquared
(
solBackup0
,
*
hessian3d
)
+
computeEnergyNormSquared
(
rodDifference
,
hessianRod
));
double
convRate
=
error
/
oldError
;
totalConvRate
*=
convRate
;
// Output
std
::
cout
<<
"DD iteration: "
<<
i
<<
" error : "
<<
error
<<
", "
<<
"convrate "
<<
convRate
<<
" total conv rate "
<<
std
::
pow
(
totalConvRate
,
1
/
((
double
)
i
+
1
))
<<
std
::
endl
;
if
(
error
<
1e-12
)
break
;
oldError
=
error
;
}
std
::
cout
<<
"damping: "
<<
damping
<<
" convRate: "
<<
std
::
pow
(
totalConvRate
,
1
/
((
double
)
i
+
1
))
<<
std
::
endl
;
// //////////////////////////////
// Output result
// //////////////////////////////
...
...
@@ -330,8 +524,8 @@ int main (int argc, char *argv[]) try
LeafAmiraMeshWriter
<
GridType
>::
writeBlockVector
(
grid
,
x3d
,
"grid.sol"
);
writeRod
(
rodX
,
"rod3d.result"
);
for
(
int
i
=
0
;
i
<
rodX
.
size
();
i
++
)
std
::
cout
<<
rodX
[
i
]
<<
std
::
endl
;
//
for (int i=0; i<rodX.size(); i++)
//
std::cout << rodX[i] << std::endl;
}
catch
(
Exception
e
)
{
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment