Skip to content
Snippets Groups Projects
Commit f0a8d830 authored by Oliver Sander's avatar Oliver Sander Committed by sander@PCPOOL.MI.FU-BERLIN.DE
Browse files

error mesurement infrastructure

[[Imported from SVN: r1530]]
parent 426f5c5e
No related branches found
No related tags found
No related merge requests found
......@@ -30,6 +30,7 @@
#include "src/configuration.hh"
#include "src/averageinterface.hh"
#include "src/rodsolver.hh"
#include "src/roddifference.hh"
#include "src/rodwriter.hh"
// Space dimension
......@@ -38,12 +39,23 @@ const int dim = 3;
using namespace Dune;
using std::string;
template <class DiscFuncType, int blocksize>
double computeEnergyNormSquared(const DiscFuncType& u,
const BCRSMatrix<FieldMatrix<double,blocksize,blocksize> >& A)
{
DiscFuncType tmp(u.size());
tmp = 0;
A.umv(u, tmp);
return u*tmp;
}
int main (int argc, char *argv[]) try
{
// Some types that I need
typedef BCRSMatrix<FieldMatrix<double, dim, dim> > MatrixType;
typedef BlockVector<FieldVector<double, dim> > VectorType;
typedef std::vector<Configuration> RodSolutionType;
typedef BlockVector<FieldVector<double, 6> > RodDifferenceType;
// parse data file
ConfigParser parameterSet;
......@@ -52,7 +64,9 @@ int main (int argc, char *argv[]) try
// read solver settings
const int minLevel = parameterSet.get("minLevel", int(0));
const int maxLevel = parameterSet.get("maxLevel", int(0));
const double ddTolerance = parameterSet.get("ddTolerance", double(0));
const int maxDirichletNeumannSteps = parameterSet.get("maxDirichletNeumannSteps", int(0));
const double trTolerance = parameterSet.get("trTolerance", double(0));
const int maxTrustRegionSteps = parameterSet.get("maxTrustRegionSteps", int(0));
const int multigridIterations = parameterSet.get("numIt", int(0));
const int nu1 = parameterSet.get("nu1", int(0));
......@@ -61,7 +75,7 @@ int main (int argc, char *argv[]) try
const int baseIterations = parameterSet.get("baseIt", int(0));
const double mgTolerance = parameterSet.get("tolerance", double(0));
const double baseTolerance = parameterSet.get("baseTolerance", double(0));
const int initialTrustRegionRadius = parameterSet.get("initialTrustRegionRadius", int(0));
const double initialTrustRegionRadius = parameterSet.get("initialTrustRegionRadius", double(0));
const double damping = parameterSet.get("damping", double(1));
// Problem settings
......@@ -72,7 +86,6 @@ int main (int argc, char *argv[]) try
std::string interfaceNodesFile = parameterSet.get("interfaceNodes", "xyz");
const int numRodBaseElements = parameterSet.get("numRodBaseElements", int(0));
// ///////////////////////////////////////
// Create the rod grid
// ///////////////////////////////////////
......@@ -192,13 +205,15 @@ int main (int argc, char *argv[]) try
rodSolver.setup(rodGrid,
&rodAssembler,
rodX,
trTolerance,
maxTrustRegionSteps,
initialTrustRegionRadius,
multigridIterations,
mgTolerance,
mu, nu1, nu2,
baseIterations,
baseTolerance);
baseTolerance,
false);
// ////////////////////////////////
// Create a multigrid solver
......@@ -229,7 +244,7 @@ int main (int argc, char *argv[]) try
multigridIterations,
mgTolerance,
&energyNorm,
Solver::FULL);
Solver::QUIET);
// ////////////////////////////////////
// Create the transfer operators
......@@ -253,12 +268,18 @@ int main (int argc, char *argv[]) try
Configuration referenceInterface = rodX[0];
Configuration lambda = referenceInterface;
//
double normOfOldCorrection = 0;
for (int i=0; i<maxDirichletNeumannSteps; i++) {
std::cout << "----------------------------------------------------" << std::endl;
std::cout << " Dirichlet-Neumann Step Number: " << i << std::endl;
std::cout << "----------------------------------------------------" << std::endl;
// Backup of the current solution for the error computation later on
VectorType oldSolution3d = x3d;
// //////////////////////////////////////////////////
// Dirichlet step for the rod
// //////////////////////////////////////////////////
......@@ -272,16 +293,20 @@ int main (int argc, char *argv[]) try
// ///////////////////////////////////////////////////////////
// Extract Neumann values and transfer it to the 3d object
// ///////////////////////////////////////////////////////////
FieldVector<double,dim> resultantForce = rodAssembler.getResultantForce(rodX);
BitField couplingBitfield(rodX.size(),false);
// Using the index 0 is always the left boundary for a uniformly refined OneDGrid
couplingBitfield[0] = true;
BoundaryPatch<RodGridType> couplingBoundary(rodGrid, rodGrid.maxLevel(), couplingBitfield);
FieldVector<double,dim> resultantTorque;
FieldVector<double,dim> resultantForce = rodAssembler.getResultantForce(couplingBoundary, rodX, resultantTorque);
std::cout << "resultant force: " << resultantForce << std::endl;
#if 0
FieldVector<double,dim> resultantTorque = rodAssembler.getResultantTorque(grid, rodX);
#endif
std::cout << "resultant torque: " << resultantTorque << std::endl;
VectorType neumannValues(grid.size(dim));
neumannValues = 0;
for (int j=0; j<neumannValues.size(); j++)
if (interfaceBoundary[grid.maxLevel()].containsVertex(j))
neumannValues[j] = resultantForce;
computeAveragePressure<GridType>(resultantForce, resultantTorque, interfaceBoundary[grid.maxLevel()], neumannValues);
rhs3d = 0;
assembleAndAddNeumannTerm<GridType, VectorType>(interfaceBoundary[grid.maxLevel()],
......@@ -305,10 +330,6 @@ int main (int argc, char *argv[]) try
// ///////////////////////////////////////////////////////////
Configuration averageInterface;
// x3d = 0;
// for (int i=0; i<x3d.size(); i++)
// x3d[i][2] = 1;
computeAverageInterface(interfaceBoundary[toplevel], x3d, averageInterface);
std::cout << "average interface: " << averageInterface << std::endl;
......@@ -321,8 +342,181 @@ int main (int argc, char *argv[]) try
lambda.r[j] = (1-damping) * lambda.r[j] + damping * (referenceInterface.r[j] + averageInterface.r[j]);
lambda.q = averageInterface.q.mult(referenceInterface.q);
// ////////////////////////////////////////////////////////////////////////
// Write the two iterates to disk for later convergence rate measurement
// ////////////////////////////////////////////////////////////////////////
// First the 3d body
char iSolFilename[100];
sprintf(iSolFilename, "tmp/intermediate3dSolution_%04d", i);
FILE* fp = fopen(iSolFilename, "wb");
if (!fp)
DUNE_THROW(SolverError, "Couldn't open file " << iSolFilename << " for writing");
for (int j=0; j<x3d.size(); j++)
for (int k=0; k<dim; k++)
fwrite(&x3d[j][k], sizeof(double), 1, fp);
fclose(fp);
// Then the rod
char iRodFilename[100];
sprintf(iRodFilename, "tmp/intermediateRodSolution_%04d", i);
FILE* fpRod = fopen(iRodFilename, "wb");
if (!fpRod)
DUNE_THROW(SolverError, "Couldn't open file " << iRodFilename << " for writing");
for (int j=0; j<rodX.size(); j++) {
for (int k=0; k<dim; k++)
fwrite(&rodX[j].r[k], sizeof(double), 1, fpRod);
for (int k=0; k<4; k++) // 3d hardwired here!
fwrite(&rodX[j].q[k], sizeof(double), 1, fpRod);
}
fclose(fpRod);
// ////////////////////////////////////////////
// Compute error in the energy norm
// ////////////////////////////////////////////
// the 3d body
double oldNorm = computeEnergyNormSquared(oldSolution3d, *hessian3d);
oldSolution3d -= x3d;
double normOfCorrection = computeEnergyNormSquared(oldSolution3d, *hessian3d);
// the rod \todo missing
#warning Energy error of the rod still missing
oldNorm = std::sqrt(oldNorm);
normOfCorrection = std::sqrt(normOfCorrection);
double relativeError = normOfCorrection / oldNorm;
double convRate = normOfCorrection / normOfOldCorrection;
normOfOldCorrection = normOfCorrection;
// Output
std::cout << "DD iteration: " << i << " -- ||u^{n+1} - u^n||: " << relativeError << ", "
<< "convrate " << convRate << "\n";
if (relativeError < ddTolerance)
break;
}
// //////////////////////////////////////////////////////////
// Recompute and compare against exact solution
// //////////////////////////////////////////////////////////
VectorType exactSol3d = x3d;
RodSolutionType exactSolRod = rodX;
// //////////////////////////////////////////////////////////
// Compute hessian of the rod functional at the exact solution
// for use of the energy norm it creates.
// //////////////////////////////////////////////////////////
BCRSMatrix<FieldMatrix<double, 6, 6> > hessianRod;
MatrixIndexSet indices(exactSolRod.size(), exactSolRod.size());
rodAssembler.getNeighborsPerVertex(indices);
indices.exportIdx(hessianRod);
rodAssembler.assembleMatrix(exactSolRod, hessianRod);
double error = std::numeric_limits<double>::max();
double oldError = 0;
double totalConvRate = 1;
VectorType intermediateSol3d(x3d.size());
RodSolutionType intermediateSolRod(rodX.size());
// Compute error of the initial 3d solution
// This should really be exactSol-initialSol, but we're starting
// from zero anyways
oldError += computeEnergyNormSquared(exactSol3d, *hessian3d);
/** \todo Rod error still missing */
oldError = std::sqrt(oldError);
int i;
for (i=0; i<maxDirichletNeumannSteps; i++) {
// /////////////////////////////////////////////////////
// Read iteration from file
// /////////////////////////////////////////////////////
// Read 3d solution from file
char iSolFilename[100];
sprintf(iSolFilename, "tmp/intermediate3dSolution_%04d", i);
FILE* fpInt = fopen(iSolFilename, "rb");
if (!fpInt)
DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
for (int j=0; j<intermediateSol3d.size(); j++)
fread(&intermediateSol3d[j], sizeof(double), dim, fpInt);
fclose(fpInt);
// Read rod solution from file
sprintf(iSolFilename, "tmp/intermediateRodSolution_%04d", i);
fpInt = fopen(iSolFilename, "rb");
if (!fpInt)
DUNE_THROW(IOError, "Couldn't open intermediate solution '" << iSolFilename << "'");
for (int j=0; j<intermediateSolRod.size(); j++) {
fread(&intermediateSolRod[j].r, sizeof(double), dim, fpInt);
fread(&intermediateSolRod[j].q, sizeof(double), 4, fpInt);
}
fclose(fpInt);
// /////////////////////////////////////////////////////
// Compute error
// /////////////////////////////////////////////////////
VectorType solBackup0 = intermediateSol3d;
solBackup0 -= exactSol3d;
RodDifferenceType rodDifference = computeRodDifference(exactSolRod, intermediateSolRod);
error = std::sqrt(computeEnergyNormSquared(solBackup0, *hessian3d)
+
computeEnergyNormSquared(rodDifference, hessianRod));
double convRate = error / oldError;
totalConvRate *= convRate;
// Output
std::cout << "DD iteration: " << i << " error : " << error << ", "
<< "convrate " << convRate
<< " total conv rate " << std::pow(totalConvRate, 1/((double)i+1)) << std::endl;
if (error < 1e-12)
break;
oldError = error;
}
std::cout << "damping: " << damping
<< " convRate: " << std::pow(totalConvRate, 1/((double)i+1)) << std::endl;
// //////////////////////////////
// Output result
// //////////////////////////////
......@@ -330,8 +524,8 @@ int main (int argc, char *argv[]) try
LeafAmiraMeshWriter<GridType>::writeBlockVector(grid, x3d, "grid.sol");
writeRod(rodX, "rod3d.result");
for (int i=0; i<rodX.size(); i++)
std::cout << rodX[i] << std::endl;
// for (int i=0; i<rodX.size(); i++)
// std::cout << rodX[i] << std::endl;
} catch (Exception e) {
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment