Commit 5d775675 authored by Sander, Oliver's avatar Sander, Oliver
Browse files

Leeres Skript mit einer groben Übersicht

parents
Pipeline #6020 failed with stage
# LaTeX temporary files
*.aux
*.bbl
*.bcf
*.blg
*.log
*.out
*.run.xml
*.synctex.gz
*.toc
*.upa
*.upb
# latexmk stuff
*.fdb_latexmk
*.fls
*.auxlock
# Kile backup files
*.backup
# vim tmp files
# *.tex.swp
# Final document
skript-mehrgitter-sander.pdf
image: mirisbowring/texlive_ctan_full:2019
compiling:
script:
# use settings from .latexmkrc
- latexmk
artifacts:
paths:
- "out/skript-mehrgitter-sander.pdf"
expire_in: 40 weeks
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://web.resource.org/cc/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="120"
height="42"
id="svg2759"
sodipodi:version="0.32"
inkscape:version="0.45+devel"
version="1.0"
sodipodi:docname="by-sa.svg"
inkscape:output_extension="org.inkscape.output.svg.inkscape">
<defs
id="defs2761" />
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#8b8b8b"
borderopacity="1"
gridtolerance="10000"
guidetolerance="10"
objecttolerance="10"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="1"
inkscape:cx="179"
inkscape:cy="89.569904"
inkscape:document-units="px"
inkscape:current-layer="layer1"
width="120px"
height="42px"
inkscape:showpageshadow="false"
inkscape:window-width="1198"
inkscape:window-height="624"
inkscape:window-x="488"
inkscape:window-y="401" />
<metadata
id="metadata2764">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Layer 1"
inkscape:groupmode="layer"
id="layer1">
<g
transform="matrix(0.9937807,0,0,0.9936694,-177.69409,-74.436409)"
id="g287"
inkscape:export-filename="/mnt/hgfs/Bov/Documents/Work/2007/cc/identity/srr buttons/big/by-sa.png"
inkscape:export-xdpi="300.23013"
inkscape:export-ydpi="300.23013">
<path
id="path3817_2_"
nodetypes="ccccccc"
d="M 182.23532,75.39014 L 296.29928,75.59326 C 297.89303,75.59326 299.31686,75.35644 299.31686,78.77344 L 299.17721,116.34033 L 179.3569,116.34033 L 179.3569,78.63379 C 179.3569,76.94922 179.51999,75.39014 182.23532,75.39014 z"
style="fill:#aab2ab" />
<g
id="g5908_2_"
transform="matrix(0.872921,0,0,0.872921,50.12536,143.2144)">
<path
id="path5906_2_"
cx="296.35416"
ry="22.939548"
cy="264.3577"
type="arc"
rx="22.939548"
d="M 187.20944,-55.6792 C 187.21502,-46.99896 180.18158,-39.95825 171.50134,-39.95212 C 162.82113,-39.94708 155.77929,-46.97998 155.77426,-55.66016 C 155.77426,-55.66687 155.77426,-55.67249 155.77426,-55.6792 C 155.76922,-64.36054 162.80209,-71.40125 171.48233,-71.40631 C 180.16367,-71.41193 187.20441,-64.37842 187.20944,-55.69824 C 187.20944,-55.69263 187.20944,-55.68591 187.20944,-55.6792 z"
style="fill:#ffffff" />
<g
id="g5706_2_"
transform="translate(-289.6157,99.0653)">
<path
id="path5708_2_"
d="M 473.88455,-167.54724 C 477.36996,-164.06128 479.11294,-159.79333 479.11294,-154.74451 C 479.11294,-149.69513 477.40014,-145.47303 473.9746,-142.07715 C 470.33929,-138.50055 466.04281,-136.71283 461.08513,-136.71283 C 456.18736,-136.71283 451.96526,-138.48544 448.42003,-142.03238 C 444.87419,-145.57819 443.10158,-149.81537 443.10158,-154.74451 C 443.10158,-159.6731 444.87419,-163.94049 448.42003,-167.54724 C 451.87523,-171.03375 456.09728,-172.77618 461.08513,-172.77618 C 466.13342,-172.77618 470.39914,-171.03375 473.88455,-167.54724 z M 450.76657,-165.20239 C 447.81982,-162.22601 446.34701,-158.7395 446.34701,-154.74005 C 446.34701,-150.7417 447.80529,-147.28485 450.72125,-144.36938 C 453.63778,-141.45288 457.10974,-139.99462 461.1383,-139.99462 C 465.16683,-139.99462 468.66848,-141.46743 471.64486,-144.41363 C 474.47076,-147.14947 475.88427,-150.59069 475.88427,-154.74005 C 475.88427,-158.85809 474.44781,-162.35297 471.57659,-165.22479 C 468.70595,-168.09546 465.22671,-169.53131 461.1383,-169.53131 C 457.04993,-169.53131 453.59192,-168.08813 450.76657,-165.20239 z M 458.52106,-156.49927 C 458.07074,-157.4809 457.39673,-157.9715 456.49781,-157.9715 C 454.90867,-157.9715 454.11439,-156.90198 454.11439,-154.763 C 454.11439,-152.62341 454.90867,-151.55389 456.49781,-151.55389 C 457.54719,-151.55389 458.29676,-152.07519 458.74647,-153.11901 L 460.94923,-151.94598 C 459.8993,-150.0805 458.32417,-149.14697 456.22374,-149.14697 C 454.60384,-149.14697 453.30611,-149.64367 452.33168,-150.63653 C 451.35561,-151.62994 450.86894,-152.99926 450.86894,-154.7445 C 450.86894,-156.46008 451.37123,-157.82159 452.37642,-158.83013 C 453.38161,-159.83806 454.63347,-160.34264 456.13423,-160.34264 C 458.35435,-160.34264 459.94407,-159.46776 460.90504,-157.71978 L 458.52106,-156.49927 z M 468.8844,-156.49927 C 468.43353,-157.4809 467.77292,-157.9715 466.90201,-157.9715 C 465.28095,-157.9715 464.46988,-156.90198 464.46988,-154.763 C 464.46988,-152.62341 465.28095,-151.55389 466.90201,-151.55389 C 467.95304,-151.55389 468.68918,-152.07519 469.10925,-153.11901 L 471.36126,-151.94598 C 470.31301,-150.0805 468.74007,-149.14697 466.64358,-149.14697 C 465.02587,-149.14697 463.73095,-149.64367 462.75711,-150.63653 C 461.78494,-151.62994 461.29773,-152.99926 461.29773,-154.7445 C 461.29773,-156.46008 461.79221,-157.82159 462.78061,-158.83013 C 463.76843,-159.83806 465.02588,-160.34264 466.55408,-160.34264 C 468.77027,-160.34264 470.35776,-159.46776 471.3154,-157.71978 L 468.8844,-156.49927 z" />
</g>
</g>
<path
d="M 297.29639,74.91064 L 181.06688,74.91064 C 179.8203,74.91064 178.80614,75.92529 178.80614,77.17187 L 178.80614,116.66748 C 178.80614,116.94922 179.03466,117.17822 179.31639,117.17822 L 299.04639,117.17822 C 299.32813,117.17822 299.55713,116.94922 299.55713,116.66748 L 299.55713,77.17188 C 299.55713,75.92529 298.54297,74.91064 297.29639,74.91064 z M 181.06688,75.93213 L 297.29639,75.93213 C 297.97998,75.93213 298.53565,76.48828 298.53565,77.17188 C 298.53565,77.17188 298.53565,93.09131 298.53565,104.59034 L 215.4619,104.59034 C 212.41698,110.09571 206.55077,113.83399 199.81835,113.83399 C 193.083,113.83399 187.21825,110.09913 184.1748,104.59034 L 179.82666,104.59034 C 179.82666,93.09132 179.82666,77.17188 179.82666,77.17188 C 179.82664,76.48828 180.38329,75.93213 181.06688,75.93213 z"
id="path294" />
<g
enable-background="new "
id="g296">
<path
d="M 265.60986,112.8833 C 265.68994,113.03906 265.79736,113.16504 265.93115,113.26172 C 266.06494,113.35791 266.22119,113.42969 266.40088,113.47608 C 266.58154,113.52296 266.76807,113.54639 266.96045,113.54639 C 267.09033,113.54639 267.22998,113.53565 267.3794,113.51368 C 267.52784,113.4922 267.66749,113.44972 267.79835,113.3877 C 267.92823,113.32569 268.03761,113.23975 268.12355,113.13086 C 268.21144,113.02197 268.25441,112.88379 268.25441,112.71533 C 268.25441,112.53515 268.19679,112.38916 268.08156,112.27685 C 267.9673,112.16455 267.81594,112.07177 267.62941,111.99658 C 267.44386,111.92236 267.23195,111.85693 266.9966,111.80078 C 266.76027,111.74463 266.52101,111.68262 266.27883,111.61377 C 266.02981,111.55176 265.78762,111.47559 265.55129,111.38525 C 265.31594,111.29541 265.10402,111.17822 264.9175,111.03515 C 264.73098,110.89208 264.58059,110.71337 264.46535,110.49853 C 264.35109,110.28369 264.29347,110.02392 264.29347,109.71923 C 264.29347,109.37646 264.36671,109.07958 264.51222,108.82763 C 264.6587,108.57568 264.85011,108.36572 265.08644,108.19726 C 265.32179,108.02929 265.58937,107.90478 265.8882,107.82372 C 266.18605,107.74315 266.48488,107.70263 266.78273,107.70263 C 267.13136,107.70263 267.46535,107.74169 267.78566,107.81982 C 268.105,107.89746 268.39015,108.02392 268.6382,108.19824 C 268.88722,108.37256 269.08449,108.59521 269.23097,108.86621 C 269.37648,109.13721 269.44972,109.46582 269.44972,109.85156 L 268.02784,109.85156 C 268.01514,109.65234 267.97315,109.4873 267.90284,109.35693 C 267.83155,109.22607 267.73682,109.12353 267.61964,109.04834 C 267.50148,108.97412 267.36671,108.9209 267.21534,108.89014 C 267.063,108.85889 266.89796,108.84326 266.71827,108.84326 C 266.60108,108.84326 266.48292,108.85596 266.36573,108.88037 C 266.24757,108.90576 266.14112,108.94922 266.04542,109.01123 C 265.94874,109.07373 265.86964,109.15137 265.80812,109.24463 C 265.7466,109.33838 265.71535,109.45654 265.71535,109.59961 C 265.71535,109.73047 265.73976,109.83643 265.78957,109.91699 C 265.83937,109.99804 265.93801,110.07275 266.08352,110.14111 C 266.22903,110.20947 266.43118,110.27832 266.68899,110.34668 C 266.9468,110.41504 267.28372,110.50244 267.70071,110.60791 C 267.82473,110.63281 267.99661,110.67822 268.21731,110.74365 C 268.43801,110.80908 268.65676,110.91308 268.87454,111.05615 C 269.09231,111.1997 269.27981,111.39111 269.43899,111.63037 C 269.59719,111.87012 269.67629,112.17676 269.67629,112.55029 C 269.67629,112.85547 269.61672,113.13867 269.49856,113.3999 C 269.3804,113.66162 269.20461,113.8872 268.97122,114.07666 C 268.73782,114.26709 268.44876,114.41455 268.10403,114.52051 C 267.75833,114.62647 267.35794,114.6792 266.90481,114.6792 C 266.53762,114.6792 266.18118,114.63379 265.83547,114.54346 C 265.49074,114.45313 265.18508,114.31104 264.92043,114.11768 C 264.65676,113.92432 264.4468,113.67774 264.29055,113.37891 C 264.13528,113.07959 264.06106,112.7251 264.06692,112.31397 L 265.4888,112.31397 C 265.48877,112.53809 265.52881,112.72803 265.60986,112.8833 z"
id="path298"
style="fill:#ffffff" />
<path
d="M 273.8667,107.8667 L 276.35986,114.53076 L 274.8374,114.53076 L 274.33349,113.04638 L 271.84033,113.04638 L 271.31787,114.53076 L 269.84326,114.53076 L 272.36377,107.8667 L 273.8667,107.8667 z M 273.95068,111.95264 L 273.11084,109.50928 L 273.09229,109.50928 L 272.22315,111.95264 L 273.95068,111.95264 z"
id="path300"
style="fill:#ffffff" />
</g>
<g
enable-background="new "
id="g302">
<path
d="M 239.17821,107.8667 C 239.49559,107.8667 239.78563,107.89502 240.04735,107.95068 C 240.30907,108.00683 240.53368,108.09863 240.72118,108.22607 C 240.9077,108.35351 241.05321,108.52295 241.15575,108.73437 C 241.25829,108.94579 241.31005,109.20703 241.31005,109.51806 C 241.31005,109.854 241.23388,110.13329 241.08056,110.35742 C 240.92822,110.58154 240.70165,110.76465 240.40283,110.90771 C 240.81494,111.02587 241.12256,111.23291 241.32568,111.5288 C 241.5288,111.82469 241.63037,112.18114 241.63037,112.59814 C 241.63037,112.93408 241.56494,113.22509 241.43408,113.47119 C 241.30322,113.7168 241.12646,113.91748 240.90576,114.07324 C 240.68408,114.229 240.43115,114.34424 240.14795,114.41845 C 239.86377,114.49365 239.57275,114.53075 239.27295,114.53075 L 236.03662,114.53075 L 236.03662,107.86669 L 239.17821,107.86669 L 239.17821,107.8667 z M 238.99071,110.56201 C 239.25243,110.56201 239.46727,110.5 239.63622,110.37597 C 239.80419,110.25146 239.88817,110.05029 239.88817,109.77099 C 239.88817,109.61572 239.85985,109.48828 239.80419,109.38915 C 239.74755,109.28954 239.67333,109.21239 239.57958,109.15624 C 239.48583,109.10058 239.37841,109.06151 239.25731,109.04003 C 239.13524,109.01806 239.00926,109.00732 238.8784,109.00732 L 237.50535,109.00732 L 237.50535,110.56201 L 238.99071,110.56201 z M 239.07664,113.39014 C 239.22019,113.39014 239.35691,113.37647 239.48777,113.34815 C 239.61863,113.32032 239.73484,113.27344 239.83445,113.2085 C 239.93406,113.14307 240.01316,113.0542 240.07273,112.94239 C 240.1323,112.83058 240.1616,112.68751 240.1616,112.51319 C 240.1616,112.17139 240.06492,111.92725 239.87156,111.78126 C 239.6782,111.63527 239.42234,111.56202 239.10496,111.56202 L 237.50535,111.56202 L 237.50535,113.39014 L 239.07664,113.39014 z"
id="path304"
style="fill:#ffffff" />
<path
d="M 241.88914,107.8667 L 243.53269,107.8667 L 245.09324,110.49854 L 246.64402,107.8667 L 248.27781,107.8667 L 245.80418,111.97315 L 245.80418,114.53077 L 244.33543,114.53077 L 244.33543,111.93604 L 241.88914,107.8667 z"
id="path306"
style="fill:#ffffff" />
</g>
<g
id="g6316_1_"
transform="matrix(0.624995,0,0,0.624995,391.2294,176.9332)">
<path
id="path6318_1_"
cx="475.97119"
ry="29.209877"
cy="252.08646"
type="arc"
rx="29.209877"
d="M -175.0083,-139.1153 C -175.00204,-129.7035 -182.62555,-122.06751 -192.03812,-122.06049 C -201.44913,-122.05341 -209.08512,-129.67774 -209.09293,-139.09028 C -209.09293,-139.09809 -209.09293,-139.10749 -209.09293,-139.1153 C -209.09919,-148.52784 -201.47413,-156.1623 -192.06311,-156.17011 C -182.65054,-156.17713 -175.01456,-148.55207 -175.0083,-139.14026 C -175.0083,-139.13092 -175.0083,-139.1239 -175.0083,-139.1153 z"
style="fill:#ffffff" />
<g
id="g6320_1_"
transform="translate(-23.9521,-89.72962)">
<path
id="path6322_1_"
d="M -168.2204,-68.05536 C -173.39234,-68.05536 -177.76892,-66.25067 -181.35175,-62.64203 C -185.02836,-58.90759 -186.86588,-54.48883 -186.86588,-49.38568 C -186.86588,-44.28253 -185.02836,-39.89416 -181.35175,-36.22308 C -177.67673,-32.55114 -173.29859,-30.71521 -168.2204,-30.71521 C -163.07974,-30.71521 -158.62503,-32.56677 -154.85312,-36.26996 C -151.30307,-39.78558 -149.52652,-44.15827 -149.52652,-49.38568 C -149.52652,-54.6123 -151.33432,-59.03265 -154.94843,-62.64203 C -158.5625,-66.25067 -162.98599,-68.05536 -168.2204,-68.05536 z M -168.17352,-64.69519 C -163.936,-64.69519 -160.33752,-63.20221 -157.37655,-60.21466 C -154.38748,-57.25836 -152.89214,-53.64899 -152.89214,-49.38568 C -152.89214,-45.09186 -154.35466,-41.52856 -157.28438,-38.69653 C -160.36876,-35.64727 -163.99849,-34.12304 -168.17351,-34.12304 C -172.34856,-34.12304 -175.94701,-35.63244 -178.96892,-38.64965 C -181.9908,-41.66918 -183.50176,-45.24657 -183.50176,-49.38567 C -183.50176,-53.52398 -181.97518,-57.13414 -178.92205,-60.21465 C -175.9939,-63.20221 -172.41107,-64.69519 -168.17352,-64.69519 z" />
<path
id="path6324_1_"
d="M -176.49548,-52.02087 C -175.75171,-56.71856 -172.44387,-59.22949 -168.30008,-59.22949 C -162.33911,-59.22949 -158.70783,-54.90448 -158.70783,-49.1372 C -158.70783,-43.50982 -162.57194,-39.13793 -168.39383,-39.13793 C -172.39856,-39.13793 -175.98297,-41.60277 -176.63611,-46.43877 L -171.93292,-46.43877 C -171.7923,-43.92778 -170.1626,-43.04418 -167.83447,-43.04418 C -165.1813,-43.04418 -163.4563,-45.50908 -163.4563,-49.27709 C -163.4563,-53.22942 -164.94693,-55.32244 -167.74228,-55.32244 C -169.79074,-55.32244 -171.55948,-54.57787 -171.93292,-52.02087 L -170.56418,-52.02789 L -174.26734,-48.32629 L -177.96894,-52.02789 L -176.49548,-52.02087 z" />
</g>
</g>
<g
id="g313">
<circle
cx="242.56226"
cy="90.224609"
r="10.8064"
id="circle315"
sodipodi:cx="242.56226"
sodipodi:cy="90.224609"
sodipodi:rx="10.8064"
sodipodi:ry="10.8064"
style="fill:#ffffff" />
<g
id="g317">
<path
d="M 245.68994,87.09766 C 245.68994,86.68116 245.35205,86.34424 244.93603,86.34424 L 240.16357,86.34424 C 239.74755,86.34424 239.40966,86.68115 239.40966,87.09766 L 239.40966,91.87061 L 240.74071,91.87061 L 240.74071,97.52295 L 244.3579,97.52295 L 244.3579,91.87061 L 245.68993,91.87061 L 245.68993,87.09766 L 245.68994,87.09766 z"
id="path319" />
<circle
cx="242.5498"
cy="84.083008"
r="1.63232"
id="circle321"
sodipodi:cx="242.5498"
sodipodi:cy="84.083008"
sodipodi:rx="1.63232"
sodipodi:ry="1.63232" />
</g>
<path
clip-rule="evenodd"
d="M 242.53467,78.31836 C 239.30322,78.31836 236.56641,79.4458 234.32715,81.70215 C 232.0293,84.03516 230.88086,86.79736 230.88086,89.98633 C 230.88086,93.1753 232.0293,95.91846 234.32715,98.21338 C 236.625,100.50781 239.36133,101.65527 242.53467,101.65527 C 245.74756,101.65527 248.53272,100.49853 250.88819,98.18359 C 253.10889,95.98681 254.21827,93.2539 254.21827,89.98632 C 254.21827,86.71874 253.08936,83.95751 250.83057,81.70214 C 248.57178,79.4458 245.80615,78.31836 242.53467,78.31836 z M 242.56396,80.41797 C 245.2124,80.41797 247.46142,81.35156 249.31103,83.21875 C 251.18115,85.06592 252.11572,87.32227 252.11572,89.98633 C 252.11572,92.66992 251.20068,94.89746 249.36963,96.66699 C 247.4419,98.57275 245.17334,99.52539 242.56397,99.52539 C 239.9546,99.52539 237.70557,98.58252 235.81739,96.6958 C 233.92774,94.80957 232.98389,92.57324 232.98389,89.98633 C 232.98389,87.3999 233.93799,85.14404 235.84619,83.21875 C 237.67676,81.35156 239.9165,80.41797 242.56396,80.41797 z"
id="path323"
style="fill-rule:evenodd" />
</g>
</g>
</g>
</svg>
@Book{braess:2013,
author = {Dietrich Braess},
title = {Finite Elemente},
publisher = {Springer Verlag},
note = {(English translation available)},
year = {2013}
}
@Book{dahmen_reusken:2008,
title = {Numerik für Ingenieure und Naturwissenschaftler},
publisher = {Springer},
year = {2008},
author = {Wolfgang Dahmen and Arnold Reusken}
}
@Book{hackbusch:1994,
title = {Iterative Solution of Large Sparse Systems of Equations},
publisher = {Springer},
year = {1994},
author = {Wolfgang Hackbusch}
}
@Book{ern_guermond:2004,
title = {Theory and Practice of Finite Elements},
publisher = {Springer},
year = {2004},
author = {Alexandre Ern and Jean-Luc Guermond}
}
@book{werner:2011,
title = {Funktionalanalysis},
publisher = {Springer},
year = {2011},
author = {Dirk Werner},
edition = {7.\ Auflage}
}
@book{yosida:1980,
title = {Functional Analysis},
publisher = {Springer},
year = {1980},
author = {K\bar{o}saku Yosida},
edition = {6.\ Auflage}
}
@article{bastian_et_al_I:2008,
author = {P. Bastian and M. Blatt and A. Dedner and C. Engwer and R. Kl\"ofkorn and M. Ohlberger and O. Sander},
title = {A Generic Interface for Parallel and Adaptive Scientific Computing. {Part~I}: Abstract Framework},
journal = {Computing},
year = {2008},
volume = {82},
number = {2-3},
pages = {103--119}
}
@TechReport{verfuerth:2019,
author = {Rüdiger Verfürth},
title = {Finite Element Methoden für Navier-Stokes Gleichungen},
institution = {Fakultät für Mathematik, Ruhr-Universität Bochum},
year = {2019},
type = {Vorlesungsskriptum},
}
@Article{verfuerth:1984,
author = {Rüdiger Verfürth},
title = {Error estimates for a mixed finite element approximation of the {S}tokes equations},
journal = {RAIRO -- Analyse numérique},
year = {1984},
volume = {18},
number = {2},
pages = {175--182}
}
@Article{bercovier_pironneau:1979,
author = {Michel Bercovier and Olivier Pironneau},
title = {Error Estimates for Finite Element Method Solution of the {S}tokes Problem in the Primitive Variables},
journal = {Numer. Math.},
year = {1979},
volume = {33},
pages = {211--224}
}
@Article{rivara:1984,
author = {M. Cecilia Rivara},
title = {Mesh Refinement Processes Based on the Generalized Bisection of Simplices},
journal = {SIAM J. Numer. Anal.},
year = {1984},
volume = {21},
number = {3},
pages = {604--613}
}
@Article{doerfler:1996,
author = {Willy D\"orfler},
title = {A Convergent Adaptive Algorithm for {P}oisson's Equation},
journal = {SIAM J. Numer. Anal.},
year = {1996},
volume = {33},
number = {3},
pages = {1106--1124},
}
@InCollection{nochetto_siebert_veeser:2009,
author = {Ricardo H. Nochetto and Kunibert G. Siebert and Andreas Veeser},
title = {Theory of adaptive finite element methods: {A}n introduction},
booktitle = {Multiscale, Nonlinear and Adaptive Approximation},
pages = {409--542},
publisher = {Springer},
year = {2009},
editor = {Ronald DeVore and Angela Kunoth},
doi = {10.1007/978-3-642-03413-8_12},
}
@Book{deuflhard_weiser:2020,
title = {Numerische Mathematik 3 --- Adaptive Lösung partieller Differentialgleichungen},
publisher = {De Gruyter},
year = {2020},
author = {Peter Deuflhard and Martin Weiser},
OPTdoi = {10.1515/9783110689655},
}
@InCollection{bank_sherman_weiser:1983,
author = {Randolph E. Bank and Andrew H. Sherman and Alan Weiser},
title = {Some Refinement Algorithms and Data Structures for Regular Local Mesh Refinement},
booktitle = {Scientific Computing. Applications of Mathematics and Computing to the Physical Sciences},
pages = {3--17},
publisher = {North-Holland},
year = {1983},
editor = {R.S. Stepleman}
}
@Article{freudenthal:1942,
author = {Hans Freudenthal},
title = {Simplizialzerlegungen von beschr\"ankter {F}lachheit},
journal = {Ann. Math.},
year = {1942},
volume = {43},
number = {3},
pages = {580--582}
}
@Article{bey:1995,
author = {J\"urgen Bey},
title = {Tetrahedral Grid Refinement},
journal = {Computing},
year = {1995},
volume = {55},
number = {4},
pages = {355--378}
}
@inproceedings{fvca6_bench:2011,
author = {Eymard, R. and Henry, G. and Herbin, R. and Hubert, F. and Kl{\"o}fkorn, R. and Manzini, G.},
affiliation = {Université Paris-Est, Paris, France},
title = {{3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids}},
booktitle = {Finite Volumes for Complex Applications VI Problems \& Perspectives},
series = {Springer Proceedings in Mathematics},
editor = {Fort, J. and F{\"u}rst, J. and Halama, J. and Herbin, R. and Hubert, F.},
publisher = {Springer},
pages = {895--930},
volume = {4},
doi = {10.1007/978-3-642-20671-9_89},
year = {2011}
}
% The following line selects the page layout for printing
%\documentclass{scrbook}
% The following lines select a page layout without vertical margins,
% and a very large right margin. This is much better for online teaching.
\documentclass[paper=310mm:297mm]{scrbook}
\KOMAoptions{twoside=false}
\usepackage[width=12cm, left=3cm, top=0.2cm, bottom=0.5cm]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{longtable,tabularx,tabulary,booktabs}
\usepackage{array}
\usepackage{caption}
\usepackage{url}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{amsfonts}
\usepackage{lmodern}
\usepackage{color}
\usepackage[ngerman]{babel}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{mathtools}
\usepackage{colonequals}
\usepackage{enumitem}
\usepackage[defernumbers=true,
maxbibnames=99, % Never write 'et al.' in a bibliography
giveninits=true, % Abbreviate first names
sortcites=true, % Sort citations when there are more than one
natbib=true, % Allow commands like \citet and \citep
backend=biber]{biblatex}
\addbibresource{skript-mehrgitter-sander.bib}
\usepackage{microtype}
\usepackage{todonotes}
\usepackage{esdiff}
\usepackage{hyperref}
\allowdisplaybreaks[0]
\setlength{\parindent}{0pt} % No indent of first line of paragraph
\newcommand{\R}{\mathbb R}
\newcommand{\N}{\mathbb N}
\newcommand{\T}{\mathcal T}
\newcommand{\curl}{\operatorname{curl}}
\renewcommand{\div}{\operatorname{div}}
\newcommand{\tr}{\operatorname{tr}}
\DeclareMathOperator*{\argmin}{arg\,min}
\newcommand{\CR}{\text{CR}} % The Crouzeix-Raviart finite element space
% Bold letters
\newcommand{\bn}{\mathbf{n}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\abs}[1]{\lvert #1 \rvert}
\newcommand{\norm}[1]{\lVert #1 \rVert}
\theoremstyle{plain} %Text ist Kursiv
\newtheorem{theorem}{Satz}[chapter]
\newtheorem{hilfssatz}{Hilfssatz}[chapter]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Korollar}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{problem}[theorem]{Problem}
\theoremstyle{definition} %Text ist \"upright"
\newtheorem{remark}[theorem]{Bemerkung}
\newtheorem{example}[theorem]{Beispiel}
\swapnumbers
% Suche auch in diesem Verzeichnis nach Bildern
\graphicspath{{gfx/}}
\begin{document}
\begin{titlepage}
\begin{center}
\vspace*{0.3\textheight}
{\Huge Numerik partieller Differentialgleichungen}
\vspace*{0.05\textheight}
{\Large Oliver Sander}
\vspace*{0.1\textheight}
\today
\vspace{0.4\textheight}
\end{center}
\end{titlepage}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Copyright notice
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\thispagestyle{empty}
\vspace*{\fill}
\noindent
\includegraphics[width=0.2\textwidth]{license-logo-cc-by-sa}
Oliver Sander, 2021
\bigskip
\noindent
Copyright 2021 by Oliver Sander.
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit \url{http://creativecommons.org/licenses/by-sa/4.0/}.
\pagebreak
\tableofcontents
\thispagestyle{empty}
\setcounter{page}{0}
\chapter{Mehrgitterverfahren}
\section{Finite-Elemente-Verfahren für elliptische Gleichungen}
\section{Lösungsverfahren für dünnbesetzte Gleichungssysteme}
\section{Mehrgitterverfahren}
\chapter{Teilraumkorrekturverfahren}
\chapter{Gleichungen in \texorpdfstring{$H(\div)$}{H(div)} und \texorpdfstring{$H(\curl)$}{H(curl)}}
\section{Die Maxwell-Gleichungen}
\section{Finite Elemente für \texorpdfstring{$H(\div)$}{H(div)} und \texorpdfstring{$H(\curl)$}{H(curl)}}
\section{Der de Rham Komplex}
\section{Mehrgitter für Probleme in \texorpdfstring{$H(\div)$}{H(div)} und \texorpdfstring{$H(\curl)$}{H(curl)}}
\chapter{Mehrgitterverfahren ohne geschachtelte Hierarchie}
\chapter{Algebraische Mehrgitterverfahren}
\chapter{Nichtlineare Gleichungen}
\section{Nichtlineare Teilraumkorrekturverfahren}
\section{Das Full Approximation Scheme (FAS)}
\section{Abgeschnittenes Newton-Mehrgitter (TNNMG)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\printbibliography
\end{document}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment